Skip to main content

Magnetic Compass: A Useful Tool Underground

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • August PV, Ayvazian SG, Anderson JTG (1989) Magnetic orientation in a small mammal, Peromyscus leucopus. J Mammal 70:1–9

    Article  Google Scholar 

  • Beason RC, Semm P (1996) Does the avian ophthalmic nerve carry magnetic navigational information? J Exp Biol 199:1241–1244

    PubMed  Google Scholar 

  • Benhamou S, Sauve JP, Bovet P (1990) Spatial memory in large-scale movements — efficiency and limitations of the egocentric coding process. J Theor Biol 145:1–12

    Article  Google Scholar 

  • Bingman VP, Cheng K (2005) Mechanisms of animal global navigation: comparative perspectives and enduring challenges. Ethol Ecol Evol 17:295–318

    Article  Google Scholar 

  • Boles LC, Lohmann KJ (2003) True navigation and magnetic maps in spiny lobsters. Nature 412:60–63

    Article  CAS  Google Scholar 

  • Brassart J, Kirschvink JL, Phillips JB, Borland SC (1999) A magnetite-based map component of homing in the Eastern red-spotted newt. J Exp Biol 202:3155–3160

    CAS  PubMed  Google Scholar 

  • Burda H (1987) Magnetische Navigation bei den Graumullen, Cryptomys hottentotus (Bathyergidae)? Z Säugetierk Suppl 61:12

    Google Scholar 

  • Burda H, Bruns V, Müller M (1990a) Sensory adaptations in subterranean mammals. In: Nevo E, Reig OA (eds) Evolution of subterranean mammals at the organismal and molecular levels. Wiley-Liss, New York, pp 269–293

    Google Scholar 

  • Burda H, Marhold S, Westenberger T, Wiltschko R, Wiltschko W (1990b) Magnetic compass orientation in the subterranean rodent Cryptomys hottentotus Bathyergidae. Experientia 46:528–530

    Article  PubMed  CAS  Google Scholar 

  • Burda H, Beiles A, Marhold S, Simson S, Nevo E, Wiltschko W (1991) Magnetic orientation in subterranean mole rats of the superspecies Spalax ehrenbergi: experiments, patterns and memory. Isr J Zool 37:182–183

    Google Scholar 

  • Cernuda-Cernuda R, Garcia-Fernandez JM, Gordijn MCM, Bovee-Geurts PHM, DeGrip WJ (2003) The eye of the african mole-rat Cryptomys anselli. to see or not to see? Eur J Neurosci 17:709–720

    Article  PubMed  Google Scholar 

  • Davila AF, Fleissner G, Winklhofer M, Petersen N (2003) A new model for a magnetoreceptor in homing pigeons based on interacting clusters of superparamagnetic magnetite. Phys Chem Earth 28:647–652

    Google Scholar 

  • Davila AF, Winklhofer M, Sheherbakov V, Petersen N (2005) Magnetic pulse affects a putative magnetoreceptor mechanism. Biophysics J 89:56–63

    Article  CAS  Google Scholar 

  • Deutschlander ME, Borland SC, Phillips JB (1999a) Extraocular magnetic compass in newts. Nature 400:324–325

    Article  PubMed  CAS  Google Scholar 

  • Deutschlander ME, Phillips JB, Borland SC (1999b) The case for a light-dependent magnetoreception mechanism in animals. J Exp Biol 202:891–908

    PubMed  Google Scholar 

  • Deutschlander ME, Freake MJ, Borland SC, Phillips JB, Anderson LE, Wilson BW (2003) Learned magnetic compass orientation by the Siberian hamster, Phodopus sungorus. Anim Behav 65:779–786

    Article  Google Scholar 

  • Diebel CE, Proksch R, Green CR, Neilson P, Walker MM (2000) Magnetite defines a vertebrate magnetoreceptor. Nature 406:299–302

    Article  PubMed  CAS  Google Scholar 

  • Eloff G (1951) Orientation in the mole-rat Cryptomys. Brit J Psychol 1/2:134–145

    Google Scholar 

  • Etienne AS, Jeffery KJ (2004) Path integration in mammals. Hippocampus 14:180–192

    Article  PubMed  Google Scholar 

  • Etienne AS, Maurer R, Saucy F (1988) Limitations in the assessment of path dependant information. Behaviour 106:81–111

    Google Scholar 

  • Fischer JH, Freake MJ, Borland SC, Phillips JB (2001) Evidence for the use of magnetic map information by amphibian. Anim Behav 62:1–10

    Article  Google Scholar 

  • Fleissner G, Holtkamp-Rötzler E, Hanzlik M, Winklhofer M, Fleissner G, Petersen N, Wiltschko W (2003) Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. J Comp Neurol 458:350–360

    Article  PubMed  CAS  Google Scholar 

  • Hanzlik M, Heunemann C, Holtkamp-Rötzler E, Winkelhofer M, Petersen N, Fleissner G (2000) Superparamagnetic magnetite in the upper beak tissue of homing pigeons. BioMetals 13:325–331

    Article  PubMed  CAS  Google Scholar 

  • Heth G, Nevo E, Beiles A (1987) Adaptive exploratory behaviour: differential patterns in species and sexes of subterranean mole rats. Mammalia 51:27–37

    Article  Google Scholar 

  • Heth G, Todrank J, Begall S, Braude S, Koch R, Zilbiger Y, Nevo E, Burda H (2002) Odour-guided foraging: “blind” subterranean rodents do not search “blindly”. Behav Ecol Sociobiol 52:53–58

    Article  Google Scholar 

  • Jeffery KJ (2003) The neurobiology of spatial behaviour. Oxford Univ Press, Oxford

    Google Scholar 

  • Johnsen S, Lohmann KJ (2005) The physics and neurobiology of magnetoreception. Nat Neurosci Rev 6:703–712

    Article  CAS  Google Scholar 

  • Jung M, Wiener SI, McNaughton BL (1994) Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat. J Neurosci 14:7347–7356

    PubMed  CAS  Google Scholar 

  • Kimchi T, Terkel J (1999) Magnetic orientation by blind mole rats in a labyrinth. Isr J Zool 45:318

    Google Scholar 

  • Kimchi T, Terkel J (2001) Magnetic compass orientation in the blind mole rat Spalax ehrenbergi. J Exp Biol 204:751–758

    PubMed  CAS  Google Scholar 

  • Kimchi T, Etienne AS, Terkel J (2004) A subterranean mammal uses the magnetic compass for path integration. Proc Natl Acad Sci USA 101:1105–1109

    Article  PubMed  CAS  Google Scholar 

  • Kirschvink JL, Gould JL (1981) Biogenic magnetite as a basis for magnetic field detection in animals. BioSystems 13:181–201

    Article  PubMed  CAS  Google Scholar 

  • Kirschvink JL, Walker MM, Diebel CE (2001) Magnetite-based magnetoreception. Curr Op Neurobiol 11:462–467

    Article  PubMed  CAS  Google Scholar 

  • Kock D, Ingram CM, Frabotta LJ, Honeycutt RL, Burda H (2006) On the nomenclature of Bathyergidae and Fukomys n. gen. Mammalia: Rodentia. Zootaxa 1142:51–55

    Google Scholar 

  • Lohmann KJ, Lohmann CMF (2006) Sea turtles, lobsters, and oceanic magnetic maps. Mar Freshwater Behav Physiol 39:49–64

    Article  Google Scholar 

  • Lovegrove BG, Körtner Gü, Körtner Ge (1992) The magnetic compass orientation of the burrows of the Damara mole-rat Cryptomys damarensis (Bathyergidae). J Zool Lond 226:631–633

    Article  Google Scholar 

  • Madden RM, Phillips JB (1987) Failure to demonstrate magnetic field sensitivity in two species of small mammals. Anim Learn Behav 15:130–134

    Google Scholar 

  • Marhold S, Wiltschko W, Burda H (1997a) A magnetic polarity compass for direction finding in a subterranean mammal. Naturwiss 84:421–423

    Article  CAS  Google Scholar 

  • Marhold S, Burda H, Kreilos I, Wiltschko W (1997b) Magnetic orientation in common molerats from Zambia. In: Orientation and navigation: birds, humans and other animals. Paper No 5. Royal Institute of Navigation, Oxford

    Google Scholar 

  • Mather JG, Baker RR (1981) Magnetic sense of direction in woodmice for route-based navigation. Nature 291:152–155

    Article  Google Scholar 

  • Möller A, Sagasser S, Wiltschko W, Schierwater B (2004) Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass. Naturwiss 91:585–588

    Article  PubMed  CAS  Google Scholar 

  • Mora CV, Davison M, Wild JM, Walker MM (2004) Magnetoreception and its trigeminal mediation in the homing pigeon. Nature 432:508–511

    Article  PubMed  CAS  Google Scholar 

  • Mouritsen H, Janssen-Bienhold U, Liedvogel M, Feenders G, Stalleicken J, Dirks P, Weiler R (2004) Cryptochromes and activity markers co-localize in bird retina during magnetic orientation. Proc Natl Acad Sci USA 101:14294–14299

    Article  PubMed  CAS  Google Scholar 

  • Muheim R, Edgar NM, Sloan KA, Phillips JB (2006) Magnetic compass orientation in C57BL/6 mice. Learn Behav 34:366–373

    PubMed  Google Scholar 

  • Muller R (1996) A quarter of a century of place cells. Neuron 17:813–822

    Article  PubMed  CAS  Google Scholar 

  • Munro U, Munro JA, Phillips JB, Wiltschko R, Wiltschko W (1997a) Evidence for a magnetite-based navigational ‘map’ in birds. Naturwiss 84:26–28

    Article  CAS  Google Scholar 

  • Munro U, Munro JA, Phillips JB, Wiltschko W (1997b) Effect of wavelength of light and pulse magnetization on different magnetoreception systems in a migratory bird. Austr J Zool 45:189–198

    Article  Google Scholar 

  • Němec P, Altmann J, Marhold S, Burda H, Oelschläger HA (2001) Magnetotopic organization in the superior colliculus: involvement of a brain structure in magnetoreception. Science 294:366–368

    Article  PubMed  Google Scholar 

  • Němec P, Burda H, Peichl L (2004) Subcortical visual system of the African mole-rat Cryptomys anselli: to see or not to see? Eur J Neurosci 203:757–768

    Article  Google Scholar 

  • Němec P, Burda H, Oelschläger HA (2005) Towards the neural nature of magnetoreception: a neuroanatomical approach. Naturwiss 92:151–157

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Oxford Univ Press, Oxford

    Google Scholar 

  • Olcese J, Reuss J, Vollrath L (1985) Evidence for the involvement of the visual system in mediating magnetic field effects on pineal melatonin synthesis in the rat. Brain Res 333:382–384

    Article  PubMed  CAS  Google Scholar 

  • Olcese J, Reuss S, Stehle J, Steinlechner S, Vollrath L (1988) Responses of the mammalian retina to experimental alteration of the ambient magnetic field. Brain Res 448:325–330

    Article  PubMed  CAS  Google Scholar 

  • Phillips JB (1986) Two magnetoreception pathways in a migratory salamander. Science 233:765–767

    Article  PubMed  CAS  Google Scholar 

  • Phillips JB, Borland SC (1992a) Behavioral evidence for the use of a light-dependent magnetoreception mechanism by a vertebrate. Nature 359:142–144.

    Article  Google Scholar 

  • Phillips JB, Borland SC (1992b) Magnetic compass orientation is eliminated under near-infrared light in the eastern red-spotted newt Notophthalmus viridescens. Anim Behav 44:796–797

    Article  Google Scholar 

  • Phillips JB, Deutschlander ME, Freake MJ, Borland SC (2001) The role of extraocular photoreceptors in newt magnetic compass orientation: evidence for parallels between light-dependent magnetoreception and polarized light detection in vertebrates. J Exp Biol 204:2543–2552

    PubMed  CAS  Google Scholar 

  • Phillips JB, Freake MJ, Fischer JH, Borland SC (2002) Behavioral titration of a magnetic map coordinate J Comp Physiol A 188:157–160

    Article  Google Scholar 

  • Phillips JB, Schmidt-Koenig K, Muheim R (2006) True navigation: sensory basis of gradient maps. In: Brown MF, Cook RG (eds) Animal spatial cognition: comparative, neural and computational approaches. Comparative Cognition Press: http://www.pigeon.psy.tufts.edu/index.php?content=animal_spatial_cognition

    Google Scholar 

  • Reuss S, Olcese J (1986) Magnetic field effects on rat pineal gland: role of retinal activation by light. Neurosci Lett 64:97–101

    Article  PubMed  CAS  Google Scholar 

  • Reuss S, Semm P, Vollrath L (1983) Different types of magnetically sensitive cells in the rat pineal gland. Neurosci Lett 40:23–26

    Article  PubMed  CAS  Google Scholar 

  • Ritz T, Adem S, Schulten K (2000) A model for photoreceptor-based magnetoreception in birds. Biophys J 78:707–718

    Article  PubMed  CAS  Google Scholar 

  • Ritz T, Phillips JB, Dommer DH (2002) Shedding light on vertebrate magnetoreception. Neuron 34:503–506

    Article  PubMed  CAS  Google Scholar 

  • Ritz T, Thalau P, Phillips J, Wiltschko R, Wiltschko W (2004) Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429:177–180

    Article  PubMed  CAS  Google Scholar 

  • Sauvé JP (1988) Analyse de l’orientation initiale dans une expérience de retour au gîte chez le mulot, Apodemus sylvaticus. Sci Tech Anim Lab 13:9–91

    Google Scholar 

  • Schleich C, Antinuchi CD (2004) Testing magnetic orientation in a solitary subterranean rodent Ctenomys talarum (Rodentia: Octodontidae). Ethology 110:485–495

    Article  Google Scholar 

  • Semm P, Demaine C (1986) Neurophysiological properties of magnetic cells in the pigeon’s visual system. J Comp Physiol A 159:619–625

    Article  PubMed  CAS  Google Scholar 

  • Semm P, Beason C (1990) Responses to small magnetic variations by the trigeminal system of the bobolink. Brain Res Bull 25:735–740

    Article  PubMed  CAS  Google Scholar 

  • Semm P, Schneider T, Vollrath L (1980) Effects of an earth-strength magnetic field on electrical activity in pineal cells. Nature 288:607–608

    Article  PubMed  CAS  Google Scholar 

  • Sharp PE (2002) The neural basis of navigation. Evidence from single cell recording. Kluver Academic Publishers, Boston

    Google Scholar 

  • Sharp PE, Blair HT, Cho JW (2001) The anatomical and computational basis of the rat head-direction cell signal. Trends Neurosci 24:289–294

    Article  PubMed  CAS  Google Scholar 

  • Shcherbakov VP, Winklhofer M (1999) The osmotic magnetometer: a new model for magnetite-based magnetoreceptors in animals. Eur Biophys J 28:380–392

    Article  CAS  Google Scholar 

  • Stehle J, Reuss S, Schroeder H, Henschel M, Vollrath L (1988) Magnetic field effects on pineal N-acetyltransferase activity and melatonin content in the gerbil — the role of pigmentation and sex. Physiol Behav 44:91–94

    Article  PubMed  CAS  Google Scholar 

  • Šumbera R, Burda H, Chitaukali WN, Kubova J (2003) Silvery mole-rats (Heliophobius argenteocinereus, Bathyergidae) change their burrow architecture seasonally. Naturwiss 90:370–373

    Article  PubMed  CAS  Google Scholar 

  • Taube JS (1998) Head direction cells and the neurophysiological basis for a sense of direction. Progr Neurobiol 55:225–256

    Article  CAS  Google Scholar 

  • Thalau P, Ritz T, Stapput K, Wiltschko R, Wiltschko W (2005) Magnetic compass orientation of migratory birds in the presence of a 1.315 MHz oscillating field. Naturwiss 92:86–90

    Article  PubMed  CAS  Google Scholar 

  • Thalau P, Ritz T, Burda H, Wegner RE, Wiltschko R (2006) The magnetic compass mechanisms of birds and rodents are based on different physical principles J R Soc Interface 3:583–587

    Article  PubMed  Google Scholar 

  • Walker MM, Diebel CE, Haugh CV, Pankhurst PM, Montogomery JC, Green CR (1997) Structure and function of the vertebrate magnetic sense. Nature 390:371–376

    Article  CAS  PubMed  Google Scholar 

  • Wegner RE, Begall S, Burda H (2006) Magnetic compass in the cornea: local anaesthesia impairs orientation in a mammal. J Exp Biol 209:4747–4750

    Article  PubMed  Google Scholar 

  • Welker H, Semm P, Willig R, Commentz J, Wiltschko W, Vollrath L (1983) Effects of an artificial magnetic field on serotonin N-acetyltranferase activity and melatonin content of the rat pineal gland. Exp Brain Res 50:426–432

    Article  PubMed  CAS  Google Scholar 

  • Williams MN, Wild JM (2001) Trigeminally innervated iron-containing structures in the beak of homing pigeons and other birds. Brain Res 889:243–246

    Article  PubMed  CAS  Google Scholar 

  • Wiltschko R, Wiltschko W (1995) Magnetic orientation in animals, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wiltschko W, Wiltschko R (2002) Magnetic compass orientation in birds and its physiological basis. Naturwiss 89:445–452

    Article  PubMed  CAS  Google Scholar 

  • Wiltschko W, Wiltschko R (2005) Magnetic orientation and magnetoreception in birds and other animals. J Comp Physiol A 191:675–693

    Article  Google Scholar 

  • Wiltschko R, Wiltschko W (2006) Magnetoreception. BioEssays 28:157–168

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moritz, R.E., Burda, H., Begall, S., Němec, P. (2007). Magnetic Compass: A Useful Tool Underground. In: Begall, S., Burda, H., Schleich, C.E. (eds) Subterranean Rodents. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69276-8_12

Download citation

Publish with us

Policies and ethics