Skip to main content

Markov Chain Monte Carlo Linkage Analysis Methods

  • Chapter
  • First Online:
Handbook on Analyzing Human Genetic Data

Abstract

As alluded to in the chapter “Linkage Analysis of Qualitative Traits”, neither the Elston–Steward algorithm nor the Lander–Green approach is amenable to genetic data from large complex pedigrees and a large number of markers. In such cases, Monte Carlo estimation methods provide a viable alternative to the exact solutions. Two types of Monte Carlo methods have been developed for linkage analysis, haplotype inference, and other kinds of genetic analysis. They are Markov chain Monte Carlo (MCMC) methods and Monte Carlo methods that are based on independent samples. Approaches based on Markov chain Monte Carlo methods are more widely applicable; there is practically no limit on the size or complexity of the pedigrees, nor on the number of markers to be considered simultaneously. In this chapter, we will review the basic principles of MCMC methods for multipoint linkage analysis with extended pedigrees. Both simulations and application to data from the Framingham study will be used to compare and contrast three MCMC software packages: LOKI, MORGAN, and SIMWALK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) Merlin – rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30:97–101

    Article  CAS  PubMed  Google Scholar 

  2. Atwood LD, Heard-Costa NL (2003) Limits of fine-mapping a quantitative trait. Genet Epidemiol 24:99–106

    Article  PubMed  Google Scholar 

  3. Biswas S, Lin S (2006) A Bayesian approach for incorporating variable rates of heterogeneity in linkage analysis. J Am Stat Assoc 101:1341–1351

    Article  CAS  Google Scholar 

  4. Biswas S, Papachristou C, Irwin MC, Lin S (2003) Linkage analysis of the simulated data – evaluations and comparisons of methods. BMC Genet 31 (Suppl 1):S70

    Article  Google Scholar 

  5. Bonney G (1986) Regressive logistic models for familial disease and other binary traits. Biometrics 42:611–625

    Article  CAS  PubMed  Google Scholar 

  6. Chen W-M, Abecasis GR (2007) Family-based association tests for genomewide association scans. Am J Hum Genet 81:913–926

    Article  CAS  PubMed  Google Scholar 

  7. Cottingham R, Idury RM, Schffer AA (1993) Faster sequential genetic linkage computations. Am J Hum Genet 53:252–263

    PubMed  Google Scholar 

  8. Cupples LA, Yang Q, Demissie S, Copenhafer D, Levy D, FraminghamHeartStudyInvestigators (2003) Desription of the Framingham Heart Study data for Genetic Analysis Workshop 13. BMC Genet 4(Suppl. 1):S2

    Google Scholar 

  9. Dietter J, Spiegel A, an Mey D, Pflug H-J, Al-Kateb H, Hoffmann K, Wienker TF, Strauch K (2004) Efficient two-trait-locus linkage analysis through program optimization and parallelization: application to hypercholesterolemia. Eur J Hum. Genet 12:542–550

    Google Scholar 

  10. Ding J, Lin S, Liu Y (2006) Monte Carlo pedigree disequilibrium test for markers on the X chromosome. Am J Hum Genet 79:567–573

    Article  CAS  PubMed  Google Scholar 

  11. Elston RC, Stewart J (1971) A general model for the analysis of pedigree data. Hum Hered 21:523–542

    Article  CAS  PubMed  Google Scholar 

  12. Fishelson M, Geiger D (2002) Exact genetic linkage computations for general pedigrees. Bioinformatics 18:S189–S198

    PubMed  Google Scholar 

  13. George AW, Thompson EA (2002) Multipoint linkage analyses for disease mapping in extended pedigrees: a Markov chain Monte Carlo approach. Technical report no. 405, Department of Statistics, University of Washington, Seattle, WA

    Google Scholar 

  14. George AW, Thompson EA (2003) Discovering disease genes: multipoint linkage analysis via a new Markov chain Monte Carlo approach. Stat Sci 18:515–531

    Article  Google Scholar 

  15. George AW, Basu S, Li N, Rothstein JH, Sieberts SK, Stewart W, Wijsman EM, Thompson EA (2003) Approaches to mapping genetically correlated complex traits. BMC Genet 4 (Suppl 1):S71

    Article  PubMed  Google Scholar 

  16. George AW, Wijsman EM, Thompson EA (2005) MCMC multilocus lod scores: application of a new approach. Hum Hered 59:98–108

    Article  PubMed  Google Scholar 

  17. Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82:711–732

    Article  Google Scholar 

  18. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC, Spertus JA, Costa F (2005) Diagnosis and management of the metabolic syndrome. Circulation 112:2735–2752

    Article  PubMed  Google Scholar 

  19. Heath SC (1997) Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. Am J Hum Genet 61:748–760

    Article  CAS  PubMed  Google Scholar 

  20. Horne BD, Malhotra A, Camp NJ (2003) Comparison of linkage analysis methods for genome-wide scanning of extended pedigrees, with application to the TG/HDL-C ratio in the Framingham Heart Study. BMC Genet 4(Suppl. 1):S93

    Article  PubMed  Google Scholar 

  21. Igo RP Jr, Chapman NH, Berninger VW, Matsushita M, Brkanac Z, Rothstein JH, Holzman T, Neilsen K, Raskind WH, Wijsman EM (2006) Genomewide scan for real-word reading subphenotypes of dyslexia: novel chromosome 13 locus and genetic complexity. Am J Med Genet (Neuropsychiatr Genet) 141B:15–27

    Article  Google Scholar 

  22. Igo RP, Jr, Chapman NH, Wijsman EM (2006) Segregation analysis of a complex quantitative trait: approaches for identifying influential data points. Hum Hered 61:80–86

    Article  PubMed  Google Scholar 

  23. Igo RP, Jr, Wijsman EM (2008) Empirical significance values for linkage analysis: trait simulation using posterior model distributions from MCMC oligogenic segregation analysis. Genet Epidemiol 32:119–131

    Article  PubMed  Google Scholar 

  24. Irwin M, Cox N, Kong A (1994) Sequential imputation for multipoint linkage analysis. Proc Natl Acad Sci USA 91:11684–11688

    Article  CAS  PubMed  Google Scholar 

  25. Kass RE, Rafferty AE (1995) Bayes factors. J Am Stat Assoc 90:773–795

    Article  Google Scholar 

  26. Kong A, Liu JS, Wong WH (1994) Sequential imputations and Bayesian missing data problems. J Am Stat Assoc 89:278–288

    Article  Google Scholar 

  27. Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES (1996) Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 58:1347–1363

    CAS  PubMed  Google Scholar 

  28. Lander E, Green P (1987) Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci USA 84:2363–2367

    Article  CAS  PubMed  Google Scholar 

  29. Lange K, Sobel E (1991) A random walk method for computing genetic location scores. Am J Hum Genet 49:1320–1334

    CAS  PubMed  Google Scholar 

  30. Lathrop GM, Lalouel JM, Julier C, Ott J (1984) Strategies for multilocus linkage analysis in humans. Proc Natl Acad Sci USA 81:3443–3446

    Article  CAS  PubMed  Google Scholar 

  31. Lin S (2000) Monte Carlo methods for linkage analysis of two-locus disease models. Ann Hum Genet 64:519–532

    Article  CAS  PubMed  Google Scholar 

  32. Lin S, Skrivanek Z, Irwin M (2003) Haplotyping using SIMPLE: caution on ignoring interference. Genet Epidemiol 25:384–387

    Article  PubMed  Google Scholar 

  33. Luo Y, Lin S, Irwin ME (2001) Two-locus modeling of asthma in a Hutterite pedigree via Markov chain Monte Carlo. Genet Epidemiol 21(Suppl 1):S24–S29

    PubMed  Google Scholar 

  34. Luo Y, Lin S (2003) Finding starting points for Markov chain Monte Carlo analysis of genetic data from large and complex pedigrees. Genet Epidemiol 25:14–24

    Article  CAS  PubMed  Google Scholar 

  35. MacCluer JW, Vandeberg JL, Read B, Ryder OA (1986) Pedigree analysis by computer simulation. Zoo Biol 5:147–160

    Article  Google Scholar 

  36. O’Connell JR (2001) Rapid multipoint linkage analysis via inheritance vectors in the Elston–Stewart algorithm. Hum Hered 51:226–240

    Article  PubMed  Google Scholar 

  37. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  38. Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517

    Article  CAS  PubMed  Google Scholar 

  39. Robert CP, Casella G (2004). Monte Carlo statistical methods. Springer-Verlag, New York

    Google Scholar 

  40. S.A.G.E. (2007) Statistical analysis for genetic epidemiology, version 5.4. http://darwin.cwru.edu/sage/

  41. Shearman AM, Ordovas JM, Cupples LA, Schaefer EJ, Harmon MD, Shao Y, Keen JD, DeStefano AL, Joost O, Wilson PWF, Housman DE, Myers RH (2000) Evidence for a gene influencing the TG/HDL-C ratio on chromosome 7q32.3-qter: a genome-wide scan in the Framingham Study. Hum Mol Genet 9:1315–1320

    Article  CAS  PubMed  Google Scholar 

  42. Sieh W, Basu S, Fu AQ, Rothstein JH, Scheet PA, Sterward WCL, Sung YJ, Thompson EA, Wijsman EM (2005) Comparison of marker types and map assumptions using Markov chain Monte Carlo-based linkage analysis of COGA data. BMC Genet 6(Suppl 1):S11

    Article  PubMed  Google Scholar 

  43. Skrivanek Z, Lin S, Irwin M (2003) Linkage analysis with sequential imputation. Genet Epidemiol 25:25–35

    Article  PubMed  Google Scholar 

  44. Sobel E, Lange K (1996) Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. Am J Hum Genet 58:1323–1337

    CAS  PubMed  Google Scholar 

  45. Sobel E, Sengul H, Weeks DE (2001) Multipoint estimation of identity-by-descent probabilities at arbitrary positions among marker loci on general pedigrees. Hum Hered 52:121–131

    Article  CAS  PubMed  Google Scholar 

  46. Sung YJ, Thompson EA, Wijsman EM (2007) MCMC-based linkage analysis for complex traits on general pedigrees: multipoint analysis with a two-locus model and polygenic component. Genet Epidemiol 31:103–114

    Article  PubMed  Google Scholar 

  47. Thompson EA (1995) Monte Carlo in genetic analysis. Technical report no. 294, Department of Statistics, University of Washington, Seattle, WA

    Google Scholar 

  48. Thompson EA (2000) Statistical inferences from genetic data on pedigrees, vol. 6. IMS, Beachwood, OH

    Google Scholar 

  49. Thompson EA (2005) MCMC in the analysis of genetic data on pedigrees. In: Liang F, Wang J-S, Kendall W (eds) Markov Chain Monte Carlo: innovations and applications. World Scientific, Singapore

    Google Scholar 

  50. Wijsman EM, Amos CI (1997) Genetic analysis of simulated oligogenic traits in nuclear and extended pedigrees: summary of GAW10 contributions. Genet Epidemiol 14:719–735

    Article  CAS  PubMed  Google Scholar 

  51. Thompson EA, Heath SC (1999) Estimation of conditional multilocus gene identity among relatives. In: Seillier-Moiseiwitsch F (ed) Statistics in molecular biology and genetics: selected proceedings of the 1997 Joint AMS-IMS-SIAM Summer Conference on Statistics in Molecular Biology. Institute of Mathematical Studies, Hayward, CA

    Google Scholar 

  52. Wijsman EM, Yu D (2004) Joint oligogenic segregation and linkage analysis using Bayesian Markov chain Monte Carlo methods. Mol Biotechnol 28:205–226

    Article  CAS  PubMed  Google Scholar 

  53. Wijsman EM, Rothstein J, Thompson EA (2006) Multipoint linkage analysis with many multiallelic or dense diallelic markers: Markov chain-Monte Carlo provides practical approaches for genome scans on general pedigrees. Am J Hum Genet 79:846–858

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Joseph Rothstein, Yun Ju Sung, and Ellen Wijsman for their valuable advice. This work was supported in part by NSF grant DMS-0112050 and NIH grants R01-HG002657 and RO1-HG003054. GAW is supported by NIH grant R01 GM031575. Some of the results of this paper were obtained by using the program package S.A.G.E., which is supported by a U.S. Public Health Service Resource Grant (RR03655) from the National Center for Research Resources. We also acknowledge the Framingham Heart Study for their permission to use the GAW 13 data, and we thank the Framingham Heart Study Investigators for their contributions and the NHLBI for collection of the Framingham Study data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shili Lin .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Igo, R.P., Luo, Y., Lin, S. (2009). Markov Chain Monte Carlo Linkage Analysis Methods. In: Handbook on Analyzing Human Genetic Data. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69264-5_5

Download citation

Publish with us

Policies and ethics