Skip to main content

The Neuronal Pathways Mediating the Behavioral and Addictive Properties of Nicotine

  • Chapter
Nicotine Psychopharmacology

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 192))

Abstract

This chapter considers the neurobiological mechanisms that are thought to mediate the reinforcing or rewarding properties of nicotine. It focuses on the data (derived principally from studies with experimental animals) showing that nicotine, like other drugs of dependence, stimulates the mesolimbic dopamine (DA) neurones that project to the nucleus accumbens and that these effects play a pivotal role in the biology underlying nicotine dependence. The reinforcing or rewarding properties of nicotine are thought to be associated particularly with the increase in DA overflow evoked in the shell subdivision of the accumbens. However, behavioural studies suggest that these properties of nicotine in experimental animals do not seem to be sufficiently potent to explain the powerful addiction to tobacco experienced by most habitual smokers. This chapter also considers the biological mechanisms that mediate the effects of cues and stimuli associated with the presentation of nicotine, which are thought to contribute significantly to the powerful addictive properties of tobacco smoke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alderson HL, Faulconbridge LF, Gregory LP, Latimer MP, Winn P (2003) Behavioural sensitisation to repeated d-amphetamine: effects of excitotoxic lesions of the pedunculopontine tegmental nucleus. Neuroscience 118:311–315

    Article  PubMed  CAS  Google Scholar 

  • Alderson HL, Latimer MP, Winn P (2006) Intravenous self-administration of nicotine is altered by lesions of the posterior, but not anterior, pedunculopontine tegmental nucleus. Eur J Neurosci 23:2169–2175

    Article  PubMed  Google Scholar 

  • Balfour DJK (2004) The neurobiology of tobacco dependence: a preclinical perspective on the role of the nucleus accumbens. Nic Tob Res 6:899–912

    Article  CAS  Google Scholar 

  • Balfour DJK (2006) Complementary roles for the accumbal shell and core in nicotine dependence. In: Bock G, Goode J (eds) Understanding nicotine and tobacco addiction. Novartis Sympsoium 275. Wiley, Chichester, UK, pp 96–115

    Chapter  Google Scholar 

  • Balfour DJK, Ridley DL (2000) The effects of nicotine on neural pathways implicated in depression: a factor in nicotine addiction? Pharmacol Biochem Behav 66:79–85

    Article  PubMed  CAS  Google Scholar 

  • Balfour DJK, Birrell CE, Moran RJ, Benwell MEM (1996) Effects of acute D-CPPene on mesoaccumbens dopamine responses to nicotine in the rat. Eur J Pharmacol 316:153–156

    Article  PubMed  CAS  Google Scholar 

  • Balfour DJK, Wright AE, Benwell MEM, Birrell CE (2000) The putative role of extra-synaptic mesolimbic dopamine in the neurobiology of nicotine dependence. Behav Brain Res 113: 73–83

    Article  PubMed  CAS  Google Scholar 

  • Benwell MEM, Balfour DJK (1979) Effects of nicotine administration and its withdrawal on plasma corticosterone and brain 5-hydroxyindoles. Psychopharmacology 63:7–11

    Article  PubMed  CAS  Google Scholar 

  • Benwell MEM, Balfour DJK (1982) Effects of chronic nicotine administration on the response and adaptation to stress. Psychopharmacology 76:160–162

    Article  PubMed  CAS  Google Scholar 

  • Benwell MEM, Balfour DJK (1992) The effects of acute and repeated nicotine treatment on nucleus accumbens dopamine and locomotor activity. Br J Pharmacol 105:849–856

    PubMed  CAS  Google Scholar 

  • Benwell MEM, Balfour DJK (1997) Regional variation in the effects of nicotine on catecholamine overflow in the rat brain. Eur J Pharmacol 325:13–20

    Article  PubMed  CAS  Google Scholar 

  • Benwell MEM, Balfour DJK, Anderson JM (1990) Smoking-associated changes in the serotonergic systems of discrete regions of human brain. Psychopharmacology 102:68–72

    Article  PubMed  CAS  Google Scholar 

  • Benwell MEM, Balfour DJK, Birrell CE (1995) Desensitisation of nicotine-induced dopamine responses during constant infusion with nicotine. Br J Pharmacol 114:211–217

    Google Scholar 

  • Bozarth MA, Pudiak CM, Kuo Lee R (1998) Effect of chronic nicotine on brain stimulation reward. I. Effect of daily injections. Behav Brain Res 96:185–188

    Article  PubMed  CAS  Google Scholar 

  • Brauer LH, Behm FM, Westman EC, Patel P, Rose JE (1999) Naltrexone blockade of nicotine effects in cigarette smokers. Psychopharmacology 143:339–346

    Article  PubMed  CAS  Google Scholar 

  • Brauer LH, Behm FM, Lane JD, Westman EC, Perkins C, Rose JE (2001) Individual differences in smoking reward from de-nicotinized cigarettes. Nicotine Tob Res 3:101–109

    Article  PubMed  CAS  Google Scholar 

  • Cadoni C, Di Chiara G (2000) Differential changes in the accumbens medial shell and core dopamine in behavioural sensitization to nicotine. Eur J Pharmacol 387:R23–R25

    Article  PubMed  CAS  Google Scholar 

  • Caggiula AR, Donny EC, White AR, Chaudhri N, Booth S, Gharaib MA, Hoffman A, Perkins KA, Sved AF (2001) Cue dependency of nicotine self-administration and smoking. Pharmacol Biochem Behav 70:515–530

    Article  PubMed  CAS  Google Scholar 

  • Caggiula AR, Donny EC, Chaudhri N, Perkins KA, Evans-Martin FF, Sved AF (2002) Importance of nonpharmacological factors in nicotine self-administration. Physiol Behav 77:683–687

    Article  PubMed  CAS  Google Scholar 

  • Cannon CM, Palmiter RD (2003) Reward without dopamine. J Neurosci 23:10827–10831

    PubMed  CAS  Google Scholar 

  • Carboni E, Bortone L, Giua C, Di Chiara G (2000) Dissociation of physical abstinence signs from changes in extracellular dopamine in the nucleus accumbens and in the prefrontal cortex of nicotine dependent rats. Drug Alcohol Depend 58:93–102

    Article  PubMed  CAS  Google Scholar 

  • Castane A, Valjent E, Ledent C, Parmentier M, Maldonado R, Valverde O (2002) Lack of CB1 cannabinoid receptors modifies nicotine behavioural responses, but not nicotine abstinence. Neuropharmacology 43:857–867

    Article  PubMed  CAS  Google Scholar 

  • Clarke PBS (1990) Dopaminergic mechanisms in the locomotor stimulant effects of nicotine. Biochem Pharmacol 40:1427–1432

    Article  PubMed  CAS  Google Scholar 

  • Clarke PBS, Kumar R (1983) The effects of nicotine on locomotor activity in nontolerant and tolerant rats. Br J Pharmacol 78:329–337

    PubMed  CAS  Google Scholar 

  • Cohen C, Perrault G, Voltz C, Steinberg R, Soubrié P (2002) SR141716, a central cannabinoid (CB1) receptor antagonist, blocks the motivational and dopamine-releasing effects of nicotine. Behav Pharmacol 13:451–463

    PubMed  CAS  Google Scholar 

  • Cohen C, Perrault G, Griebel G, Soubrié P (2005a) Nicotine-associated cues maintain nicotine-seeking behavior in rats several weeks after nicotine withdrawal: reversal by the cannabinoid (CB1) receptor antagonist, rimonabant. Neuropsychopharmacology 30:145–155

    Article  CAS  Google Scholar 

  • Cohen C, Kodas E, Griebel G (2005b) CB1 receptor antagonists for the treatment of nicotine addiction. Pharmacol Biochem Behav 81:387–395

    Article  CAS  Google Scholar 

  • Corrigall WA, Franklin KJB, Coen KM, Clarke PBS (1992) The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology 107:285–289

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara G (1999) Drug addiction as a dopamine-dependent associative learning disorder. Eur J Pharmacol 375:13–30

    Article  PubMed  Google Scholar 

  • Di Chiara G (2000a) Role of dopamine in the behavioural actions of nicotine related to addiction. Eur J Pharmacol 393:295–314

    Article  Google Scholar 

  • Di Chiara G (2000b) Behavioural pharmacology and neurobiology of nicotine reward and dependence. In: Clementi C, Fornasari D, Gotti C (eds) Handbook of Experimental Pharmacology, vol. 14. Berlin, Springer, Berlin, pp 603–750

    Google Scholar 

  • Di Chiara G (2002) Nucleus accumbens medial shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 137:75–114

    Article  PubMed  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Nat Acad Sci 85:5274–5278

    Article  PubMed  Google Scholar 

  • Donny EC, Chaudhri N, Caggiula AR, Evans-Martin FF, Booth S, Gharib MA, Clements LA, Sved AF (2003) Operant responding for a visual reinforcer in rats is enhanced by noncontingent nicotine: implications for nicotine self-administration and reinforcement. Psychopharmacology 169:68–76

    Article  PubMed  CAS  Google Scholar 

  • Epping-Jordan MP, Watkins SS, Koob GF, Markou A (1998) Dramatic decreases in brain reward function during nicotine withdrawal. Nature 393:76–79

    Article  PubMed  CAS  Google Scholar 

  • Forget B, Hamon M, Thiébot M-H (2005) Cannabinoid CB1 receptors are involved in motivational effects of nicotine in rats. Psychopharmacology 181:722–734

    Article  PubMed  CAS  Google Scholar 

  • Fowler JS, Logan J, Wang GJ, Volkow ND (2003) Monoamine oxidase and cigarette smoking. Neurotoxicology 24:75–82

    Article  PubMed  CAS  Google Scholar 

  • Gerrits MA, Van Ree JM (1996) Effect of nucleus accumbens dopamine depletion on motivational aspects involved in initiation of cocaine and heroin self-administration in rats. Brain Res 713:114–124

    Article  PubMed  CAS  Google Scholar 

  • Goldberg SR, Spealman RD, Goldberg DM (1981) Persistent behavior at high rates maintained by intravenous self-administration of nicotine. Science 214:573–575

    Article  PubMed  CAS  Google Scholar 

  • Hall J, Parkinson JA, Connor TMF, Dickinson A, Everitt BJ (2001) Involvement of the central nucleus of the amygdala and nucleus accumbens core in mediating Pavlovian influences on instrumental behaviour. Eur J Neurosci 13:1984–1992

    Article  PubMed  CAS  Google Scholar 

  • Harrison AA, Liem YTB, Markou A (2001) Fluoxetine combined with a serotonin-1A receptor antagonist reversed reward deficits observed during nicotine and amphetamine withdrawal in rats. Neuropsychopharmacology 25:55–71

    Article  PubMed  CAS  Google Scholar 

  • Heimer L, Zahm DS, Churchill L, Kalivas PW, Wohltman C (1991) Specificity in the projection patterns of accumbal core and medial shell in the rat. Neuroscience 41:89–125

    Article  PubMed  CAS  Google Scholar 

  • Hemby SE, No C, Koves TR, Smith JE, Dworkin SI (1997) Differences in extracellular dopamine concentration in the nucleus accumbens during response-dependent and response-independent cocaine administration in the rat. Psychopharmacology 133:7–16

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand BE, Nomikos GG, Hertel P, Schilström B, Svensson TH (1998) Reduced dopamine output in the nucleus accumbens but not the prefrontal cortex in rats displaying mecamylamine-precipitated nicotine withdrawal syndrome. Brain Res 779:214–225

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S (2003) Involvement of the olfactory tubercle in cocaine reward: intracranial self-administration studies. J Neurosci 23:9305–9311

    PubMed  CAS  Google Scholar 

  • Ito R, Dalley JW, Howes SR, Robbins TW, Everitt BJ (2000) Dissociation in conditioned dopamine release in the nucleus accumbens core and medial shell in response to cocaine cues and during cocaine-seeking behaviour in rats. J Neurosci 20:7489–7495

    PubMed  CAS  Google Scholar 

  • Ito R, Dalley JW, Robbins TW, Everitt BJ (2002) Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J Neurosci 22:6247–6253

    PubMed  CAS  Google Scholar 

  • Ito R, Robbins TW, Everitt BJ (2004) Differential control over cocaine-seeking behaviour by nucleus accumbens core and shell. Nat Neurosci 7:389–397

    Article  PubMed  CAS  Google Scholar 

  • Iyaniwura TT, Wright AE, Balfour DJK (2001) Evidence that mesoaccumbens dopamine and locomotor responses to nicotine in the rat are influenced by pre-treatment dose and strain. Psychopharmacology 158:73–79

    Article  PubMed  CAS  Google Scholar 

  • Kelley AE, Berridge KC (2002) The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci 22:3306–3311

    PubMed  CAS  Google Scholar 

  • Kenny PJ, Markou A (2001) Neurobiology of the nicotine withdrawal syndrome. Pharmacol Biochem Behav 70:531–549

    Article  PubMed  CAS  Google Scholar 

  • Kenny PJ, Gasparini F, Markou A (2003) Group II metabotropic and -amino-3-hydroxy-5-methyl-4-isoxazole? propionate (AMPA)/kainate glutamate receptors regulate the deficit in brain reward function associated with nicotine withdrawal in rats. J Pharmacol Exp Ther 306:1068–1076

    Article  PubMed  CAS  Google Scholar 

  • King AC, Meyer PJ (2000) Naltrexone alteration of acute smoking response in nicotine-dependent subjects. Pharmacol Biochem Behav 66:563–572

    Article  PubMed  CAS  Google Scholar 

  • Kling-Petersen T, Ljung E, Svensson K (1994) The preferential dopamine autoreceptor antagonist (+)-UH232 antagonizes the positive reinforcing effects of cocaine and d-amphetamine in the ICSS paradigm. Pharmacol Biochem Behav 49:345–351

    Article  PubMed  CAS  Google Scholar 

  • Kodas E, Cohen C, Louis C, Griebel G (2007) Corticolimbic circuitry for conditioned nicotine-seeking behavior in rats involves endocannabinoid signalling. Psychopharmacology 194:161–171

    Article  PubMed  CAS  Google Scholar 

  • Laviolette SR, van der Krooy D (2004) The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour. Nat Rev Neurosci 5:55–65

    Article  PubMed  CAS  Google Scholar 

  • Laviolette SR, Alexson TO, van der Krooy D (2002) Lesions of the tegmental pedunculopontine nucleus block the rewarding effects and reveal the aversive effects of nicotine in the ventral tegmental area. J Neurosci 22:8653–8660

    PubMed  CAS  Google Scholar 

  • Lecca D, Cacciapaglia F, Valentini V, Gronli J, Spiga S, Di Chiara G (2006) Preferential increase of extracellular dopamine in the rat nucleus accumbens shell as compared to that in the core during acquisition and maintenance of intravenous nicotine self-administration. Psychopharmacology 184:435–446

    Article  PubMed  CAS  Google Scholar 

  • Le Foll B, Goldberg SR (2004) Rimonabant, a CB1 antagonist, blocks nicotine-conditioned place preferences. NeuroReport 15:2139–2143

    Article  Google Scholar 

  • Le Foll B, Wertheim C, Goldberg SR (2007) High reinforcing efficacy of nicotine in non-human primates. PLoS One e230:1–8

    Google Scholar 

  • Liechti ME, Markou A (2007) Interactive effects of the mGlu5 receptor antagonist MPEP and the mGlu2/3 receptor antagonist LY341495 on nicotine self-administration and reward deficits associated with nicotine withdrawal in rats. Eur J Pharmacol 554:164–174

    Article  PubMed  CAS  Google Scholar 

  • Lin D, Koob GF, Markou A (2000) Time-dependent alterations in ICSS thresholds associated with repeated amphetamine administrations. Pharmacol Biochem Behav 65:407–417

    Article  PubMed  CAS  Google Scholar 

  • Lyness WH, Friedle NM, Moore KE (1979) Destruction of dopaminergic nerve terminals in nucleus accumbens: effect on d-amphetamine self-administration. Pharmacol Biochem Behav 11:553–556

    Article  PubMed  CAS  Google Scholar 

  • Maldonado R, Valverde O, Berrendero F (2006) Involvement of the endocannabinoid system in drug addiction. Trends Neurosci 29:225–232

    Article  PubMed  CAS  Google Scholar 

  • Malin DH (2001) Nicotine dependence studies with a laboratory model. Pharmacol Biochem Behav 70:551–559

    Article  PubMed  CAS  Google Scholar 

  • Malin DH, Lake JR, Newlin-Maultsby P, Roberts LK, Lanier JG, Carter VA, Cunningham JS, Wilson OB (1992) Rodent model of nicotine abstinence syndrome. Pharmacol Biochem Behav 43:779–784

    Article  PubMed  CAS  Google Scholar 

  • Malin DH, Lake JR, Carter VA, Cunningham JS, Wilson OB (1993) Naloxone precipitates nicotine abstinence syndrome in the rat. Psychopharmacology 112(2–3):339–342

    Article  PubMed  CAS  Google Scholar 

  • Malin DH, Lake JR, Carter VA, Cunningham JS, Hebert JS, Conrad DL, Wilson OB (1994) The nicotinic antagonist mecamylamine precipitates nicotine abstinence syndrome. Psychopharmacology 115:339–342

    Article  Google Scholar 

  • Malin DH, Lake JR, Schopen CK, Kirk JW, Sailer EE, Lawless BA, Upchurch TP, Shenoi M, Rajan N (1997) Nicotine abstinence syndrome precipitated by central but not peripheral hexamethonium. Pharmacol Biochem Behav 58:695–699

    Article  PubMed  CAS  Google Scholar 

  • Mansvelder HD, McGehee DS (2000) Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron 27:349–357

    Article  PubMed  CAS  Google Scholar 

  • Mansvelder HD, Keath JR, McGehee DS (2002) Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron 33:905–919

    Article  PubMed  CAS  Google Scholar 

  • Markou A (2007) Metabotropic glutamate receptor antagonists: novel therapeutics for nicotine dependence and depression? Biol Psychiatr 61:17–22

    Article  CAS  Google Scholar 

  • Palmatier MI, Evans-Martin FF, Hoffman A, Caggiula AR, Chaudhri N, Donny EC, Liu X, Booth S, Gharib M, Craven L, Sved AF (2006) Dissociating the primary and reinforcement-enhancing effects of nicotine using a rat self-administration paradigm with concurrently available drug and environmental reinforcers. Psychopharmacology 184:391–400

    Article  PubMed  CAS  Google Scholar 

  • Palmatier MI, Liu X, Matteson GL, Donny EC, Caggiula AR, Sved AF (2007) Conditioned reinforcement in rats established with self-administered nicotine and. enhanced by noncontingent nicotine. Psychopharmacology 195:235–243

    Article  PubMed  CAS  Google Scholar 

  • Peleg-Raibstein D, Feldon J (2006) Effects of dorsal and ventral hippocampal NMDA stimulation on nucleus accumbens core and shell dopamine release. Neuropharmacology 51:947–957

    Article  PubMed  CAS  Google Scholar 

  • Pettit HO, Ettenberg A, Bloom FE, Koob GF (1984) Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology 84:167–173

    Article  PubMed  CAS  Google Scholar 

  • Pidoplichko V, De Biasi M, Williams JT, Dani J (1997) Nicotine activates and desensitizes mid-brain dopamine neurones. Nature 390:401–404

    Article  PubMed  CAS  Google Scholar 

  • Pontieri FE, Tanda G, Orzi F, Di Chiara G (1996) Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 382:255–257

    Article  PubMed  CAS  Google Scholar 

  • Quik M (2004) Smoking, nicotine and Parkinson's disease. Trends Neurosci 27:561–568

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen K, Kallman MJ, Helton DR (1997) Serotonin-1A antagonists attenuate the effects of nicotine withdrawal on the auditory startle response. Synapse 27:145–152

    Article  PubMed  CAS  Google Scholar 

  • Rice ME, Cragg SJ (2004) Nicotine amplifies reward-related dopamine signals in striatum. Nat Neurosci 7:583–584

    Article  PubMed  CAS  Google Scholar 

  • Roberts DC, Koob GF (1982) Disruption of cocaine self-administration following 6-hydroxydopamine lesions of the ventral tegmental area in rats. Pharmacol Biochem Behav 17:901–904

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev 18:247–291

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (2003) Addiction. Annu Rev Psychol 54:25–53

    Article  PubMed  Google Scholar 

  • Rocha BA, Fumagalli F, Gainetdinov RR, Jones SR, Ator R, Giros B, Miller GW, Caron MG (1998) Cocaine self-administration in dopamine-transporter knockout mice. Nat Neurosci 1:132–137

    Article  PubMed  CAS  Google Scholar 

  • Rodd-Henricks ZA, McKenzie DL, Ting-Kai L, Murphy JM, McBride WJ (2002) Cocaine is self-administered into the medial shell but not the core of the nucleus accumbens of Wistar rats. J Pharmacol Exp Ther 303:1216–1226

    Article  PubMed  CAS  Google Scholar 

  • Rose JE, Behm FM, Levin ED (1993) Role of nicotine dose and sensory cues in the regulation of smoke intake. Pharmacol Biochem Behav 44:891–900

    Article  PubMed  CAS  Google Scholar 

  • Rose JE, Behm FM, Westman EC, Johnson M (2000) Dissociating nicotine and nonnicotine components of cigarette smoking. Pharmacol Biochem Behav 67:71–81

    Article  PubMed  CAS  Google Scholar 

  • Schilström B, Nomikos GG, Nisell M, Hertel P, Svensson TH (1998) N-methyl-D-aspartate receptor antagonisms in the ventral tegmental area diminishes the systemic nicotine-induced dopamine release in the nucleus accumbens. Neuroscience 82:781–789

    Article  PubMed  Google Scholar 

  • Schultz W (2006) Behavioral Theories and the neurophysiology of reward. Annu Rev Psychol 57:87–115

    Article  PubMed  Google Scholar 

  • Sellings LHL, Clarke PBS (2003) Segregation of amphetamine reward and locomotor stimulation between nucleus accumbens medial medial shell and core. J Neurosci 23:6295–6303

    PubMed  CAS  Google Scholar 

  • Sellings LH, McQuade LE, Clarke PB (2006) Characterization of dopamine-dependent rewarding and locomotor stimulant effects of intravenously-administered methylphenidate in rats. Neuroscience 141:1457–1468

    Article  PubMed  CAS  Google Scholar 

  • Seth P, Cheeta S, Tucci S, File SE (2002) Nicotinic–serotonergic interactions in brain and behaviour. Pharmacol Biochem Behav 71:795–805

    Article  PubMed  CAS  Google Scholar 

  • Shoaib M (2008) The cannabinoid antagonist AM251 attenuates nicotine self-administration and nicotine-seeking behaviour in rats. Neuropharmacology 54:438–444

    Article  PubMed  CAS  Google Scholar 

  • Shoaib M, Benwell MEM, Akbar MT, Stolerman IP, Balfour DJK (1994) Behavioural and neurochemical adaptations to nicotine in rats: influence of NMDA antagonists. Br J Pharmacol 111:1073–1080

    PubMed  CAS  Google Scholar 

  • Talhout R, Opperhuizen A, van Amsterdam JG (2007) Role of acetaldehyde in tobacco smoke addiction. Eur Neuropsychopharmacol 17:627–636

    Article  PubMed  CAS  Google Scholar 

  • Tanda G, Pontieri FE, Di Chiara G (1997) Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science 276:2048–2050

    Article  PubMed  CAS  Google Scholar 

  • Taylor JR, Robbins TW (1984) Enhanced behavioural control by conditioned reinforcers following microinjections of d-amphetamine into the nucleus accumbens. Psychopharmacology 84: 405–412

    Article  PubMed  CAS  Google Scholar 

  • Vanderschuren LJ, Kalivas PW (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology 151:99–120

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Wang G-J, Telang F, Fowler JS, Logan J, Childress A-R, Jayne M, Wong C (2008) Dopamine increases in striatum do not elicit craving in cocaine abusers unless they are coupled with cocaine cues. NeuroImage 39:1266–1273

    Article  PubMed  Google Scholar 

  • Watkins SS, Stinus L, Koob GF, Markou A (2000) Reward and somatic changes during precipitated nicotine withdrawal in rats; centrally and peripherally mediated effects. J Pharmacol Exp Ther 292:1053–1064

    PubMed  CAS  Google Scholar 

  • Wise RA (2004) Dopamine learning and motivation. Nat Rev Neurosci 5:483–494

    Article  PubMed  CAS  Google Scholar 

  • Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94:469–492

    Article  PubMed  CAS  Google Scholar 

  • Wyvell CL, Berridge KC (2000) Intraaccumbens amphetamine increases the pure incentive salience of a Pavlovian cue for food reward: enhancement of “wanting” without either “liking” or reinforcement. J Neurosci 20:8122–8130

    PubMed  CAS  Google Scholar 

  • Zahm DS, Brog JS (1992) On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience 50:751–767

    Article  PubMed  CAS  Google Scholar 

  • Zangen A, Solinas M, Ikemoto S, Goldberg SR, Wise RA (2006) Two brain sites for cannabinoid reward. J Neurosci 26:4901–4907

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Balfour, D.J. (2009). The Neuronal Pathways Mediating the Behavioral and Addictive Properties of Nicotine. In: Henningfield, J.E., London, E.D., Pogun, S. (eds) Nicotine Psychopharmacology. Handbook of Experimental Pharmacology, vol 192. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69248-5_8

Download citation

Publish with us

Policies and ethics