Skip to main content

The Cell Cycle and Apoptosis

  • Chapter
Apoptosis: Biology and Mechanisms

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 23))

Abstract

Which decisions can be more fundamental to the cell of a living organism than to divide or to die? Hence the tremendous efforts by biologists to understand both these processes. All somatic cells proliferate using the common mechanism of mitosis following progression through the cell cycle. Apoptosis, or programmed cell death, also appears to be a ubiquitous process in multi-cellular organisms where it serves to eliminate unwanted or damaged cells. In this chapter, we shall address the question of whether these two most fundamental of all biological pathways are interlinked. We shall discuss the differences between cell death in cycling cells from resting or quiescent cells. We shall examine the evidence that cell cycle regulatory molecules influence apoptosis and, that similarly, some of the molecules known to regulate apoptosis can impinge on cell cycle control. Finally we shall discuss models that attempt to interconnect the two processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allday MJ, Inman GJ, Crawford DH, Farrell PJ (1995) DNA damage in human B cells can induce apoptosis, proceeding from G1/S when p53 is transactivation competent and G2/M when it is transactivation defective. EMBO J 14: 4994–5005

    PubMed  CAS  Google Scholar 

  • Almasan A, Yin Y, Kelly RE, Lee EY, Bradley A, Li W, Bertino JR, Wahl GM (1995) Deficiency of retinoblastoma protein leads to inappropriate S-phase entry, activation of E2F-responsive genes, and apoptosis. Proc Natl Acad Sci USA 92: 5436–5440

    Article  PubMed  CAS  Google Scholar 

  • Ashwell JD, Cunningham RE, Noguchi PD, Hernandez D (1987) Cell growth cycle block of T cell hybridomas upon activation with antigen. J Exp Med 165: 173–194

    Article  PubMed  CAS  Google Scholar 

  • Askew DS, Ashmun RA, Simmons BC, Cleveland JL (1991) Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene 6: 1915–1922

    PubMed  CAS  Google Scholar 

  • Badiani P, Corbella P, Kioussis D, Marvel J, Weston K (1994) Dominant interfering alleles define a role for c-Myb in T-cell development. Genes Dev 8: 770–782

    Article  PubMed  CAS  Google Scholar 

  • Benhamou LE, Cazenave PA, Sarthou P (1990) Anti-immunoglobulins induce death by apoptosis in WEHI-231 B lymphoma cells. Eur J Immunol 20: 1405–1407

    Article  PubMed  CAS  Google Scholar 

  • Boehme SA, Lenardo MJ (1993) Propriocidal apoptosis of mature T lymphocytes occurs at S phase of the cell cycle. Eur J Immunol 23: 1552–1560

    Article  PubMed  CAS  Google Scholar 

  • Brady HJM, Salomons GS, Bobeldijk RC, Berns J (1996a) T cells from baxa transgenic mice show accelerated apoptosis in response to stimuli but do not show restored DNA damage-induced cell death in the absence of p53 gene product. EMBO J 15: 1221–1230

    PubMed  CAS  Google Scholar 

  • Brady HJM, Gil-Gómez G, Kirberg J, Berns AJ (1996b) Baxa perturbs T cell development and affects cell cycle entry of T cells. EMBO J 15: 6991–7001

    PubMed  CAS  Google Scholar 

  • Brugarolas J, Chandrasekaran C, Gordon JI, Beach D, Jacks T, Hannon GJ (1995) Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377: 552–557

    Article  PubMed  CAS  Google Scholar 

  • Canman CE, Gilmer TM, Coutts SB, Kastan MB (1995) Growth factor modulation of p53-mediated growth arrest versus apoptosis. Genes Dev 9: 600–611

    Article  PubMed  CAS  Google Scholar 

  • Clarke AR, Maandag ER, van Roon M, van der Lugt N, van der Valk M, Hooper ML, Berns A, to Riele H (1992) Requirement for a functional Rb-1 gene in murine development. Nature 359: 328–330

    Article  PubMed  CAS  Google Scholar 

  • Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH (1993) Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362: 849–852

    Article  PubMed  CAS  Google Scholar 

  • Cox LS, Lane DP (1995) Tumour suppressors, kinases and clamps: how p53 regulates the cell cycle in response to DNA damage. Bioessays 17: 501–508

    Article  PubMed  CAS  Google Scholar 

  • Cross SM, Sanchez CA, Morgan CA, Schimke MK, Ramel S, Idzerda RL, Raskind WH, Reid BJ (1995) A p53-dependent mouse spindle checkpoint. Science 267: 1353–1356

    Article  PubMed  CAS  Google Scholar 

  • Deng C, Zhang P, Harper JW, Elledge SJ, Leder P (1995) Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82: 675–684

    Article  PubMed  CAS  Google Scholar 

  • Desbarats L, Schneider A, Muller D, Burgin A, Eilers M (1996) Myc: a single gene controls both proliferation and apoptosis in mammalian cells. Experientia 52: 1123–1129

    Article  PubMed  CAS  Google Scholar 

  • Di Leonardo A, Linke SP, Clarkin K, Wahl GM (1994) DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev 8: 2540–2551

    Article  PubMed  Google Scholar 

  • Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Penn LZ, Hancock DC (1992) Induction of apoptosis in fibroblasts by c-Myc protein. Cell 69: 119–128

    Article  PubMed  CAS  Google Scholar 

  • Fanidi A, Harrington EA, Evan GI (1992) Cooperative interaction between c-myc and bd-2 proto-oncogenes. Nature 359: 554–556

    Article  PubMed  CAS  Google Scholar 

  • Field SJ, Tsai FY, Kuo F, Zubiaga AM, Kaelin WJ, Livingston DM, Orkin SH, Greenberg ME (1996) E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 85: 549–561

    Article  PubMed  CAS  Google Scholar 

  • Fotedar R, Flatt J, Gupta S, Margolis RL, Fitzgerald P, Messier H, Fotedar A (1995) Activation-induced T-cell death is cell cycle dependent and regulated by cyclin B. Mol Cell Biol 15: 932–942

    PubMed  CAS  Google Scholar 

  • Frampton J, Ramqvist T, Graf T (1996) V-Myb of E26 leukemia virus up-regulates bd-2 and suppresses apoptosis in myeloid cells. Genes Dev 10: 2720–2731

    Article  PubMed  CAS  Google Scholar 

  • Galaktionov K, Chen X, Beach D (1996) Cdc25 cell-cycle phosphatase as a target of c-myc. Nature 382: 511–517

    Article  PubMed  CAS  Google Scholar 

  • Green DR, Scott DW (1994) Activation-induced apoptosis in lymphocytes. Curr Opin Immunol 6: 476–487

    Article  PubMed  CAS  Google Scholar 

  • Haas-Kogan D, Kogan SC, Levi D, Dazin P, T’Ang A, Fung YK, Israel MA (1995) Inhibition of apoptosis by the retinoblastoma gene product. EMBO J 14: 461–472

    PubMed  CAS  Google Scholar 

  • Halicka HD, Seiter K, Feldman EJ, Traganos F, Mittelman A, Ahmed T, Darzynkiewicz Z (1997) Cell cycle specificity of apoptosis during treatment of leukaemias. Apoptosis 2: 25–39

    Article  PubMed  CAS  Google Scholar 

  • Hardie DL, Johnson GD, Khan M, MacLennan IC (1993) Quantitative analysis of molecules which distinguish functional compartments within germinal centers. Eur J Immunol 23: 997–1004

    Article  PubMed  CAS  Google Scholar 

  • Harmon JM, Norman MR, Fowlkes BJ, Thompson EB (1979) Dexamethasone induces irreversible G1 arrest and death of a human lymphoid cell line. J Cell Physiol 98: 267–278

    Article  PubMed  CAS  Google Scholar 

  • Harper JW, Elledge SJ (1996) Cdk inhibitors in development and cancer. Curr Opin Genet Dev 6: 56–64

    Article  PubMed  CAS  Google Scholar 

  • Harper JW, Adami JR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cipi is a potent inhibitor of GI cyclin-dependent kinases. Cell 75: 805–816

    Article  PubMed  CAS  Google Scholar 

  • Harrington EA, Bennett MR, Fanidi A, Evan GI (1994) C-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines. EMBO J 13: 3286–3295

    PubMed  CAS  Google Scholar 

  • Hasbold J, Klaus GG (1990) Anti-immunoglobulin antibodies induce apoptosis in immature B cell lymphomas. Eur J Immunol 20: 1685–1690

    Article  PubMed  CAS  Google Scholar 

  • Heald R, McLoughlin M, McKeon F (1993) Human weel maintains mitotic timing by protecting the nucleus from cytoplasmically activated Cdc2 kinase. Cell 74: 463–474

    Article  PubMed  CAS  Google Scholar 

  • Heiskanen P, Billig H, Toppari J, Kaleva M, Arsalo A, Rapola J, Dunkel L (1996) Apoptotic cell death in the normal and cryptorchid human testis: the effect of human chorionic gonadotropin on testicular cell survival. Pediatr Res 40: 351–356

    Article  PubMed  CAS  Google Scholar 

  • Hoang AT, Cohen KJ, Barrett JF, Bergstrom DA, Dang CV (1994) Participation of cyclin A in Mycinduced apoptosis. Proc Natl Acad Sci USA 91: 6875–6879

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann I, Draetta G, Karsenti E (1994) Activation of the phosphatase activity of human cdc25A by a cdk2-cyclin E dependent phosphorylation at the G1/S transition. EMBO J 13: 4302–4310

    CAS  Google Scholar 

  • Huesmann M, Scott B, Kisielow P, von Boehmer H (1991) Kinetics and efficacy of positive selection in the thymus of normal and T cell receptor transgenic mice. Cell 66: 533–540

    Article  PubMed  CAS  Google Scholar 

  • Hunter T, Pines J (1994) Cyclins and cancer. II: cyclin D and CDK inhibitors come of age. Cell 79: 573–582

    Article  PubMed  CAS  Google Scholar 

  • Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA (1992) Effects of an Rb mutation in the mouse. Nature 359: 295–300

    Article  PubMed  CAS  Google Scholar 

  • Jansen-Dürr P, Meichle A, Steiner P, Pagano M, Finke K, Botz J, Wessbecher J, Draetta G, Filers M (1993) Differential modulation of cyclin gene expression by MYC. Proc Natl Acad Sci USA 90: 3685–3689

    Article  PubMed  Google Scholar 

  • King KL, Cidlowski JA (1995) Cell cycle and apoptosis: common pathways to life and death. J Cell Biochem 58: 175–180

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Consoli U, Andreeff M, Shiku H, Deisseroth AB, Zhang W (1995) Activation of p21 WAF1/Cipl expression by a temperature-sensitive mutant of human p53 does not lead to apoptosis. Oncogene 11: 2311–2316

    PubMed  CAS  Google Scholar 

  • Kranenburg O, van der Eb A, Zantema A (1996) Cyclin DI is an essential mediator of apoptotic neuronal cell death. EMBO J 15: 46–54

    PubMed  CAS  Google Scholar 

  • Lahti JM, Xiang J, Heath LS, Campana D, Kidd VJ (1995) PITSLRE protein kinase activity is associated with apoptosis. Mol Cell Biol 15: 1–11

    PubMed  CAS  Google Scholar 

  • Lazebnik YA, Cole S, Cooke CA, Nelson WG, Earnshaw WC (1993) Nuclear events of apoptosis in vitro in cell-free mitotic extracts: a model system for analysis of the active phase of apoptosis. J Cell Biol 123: 7–22

    Article  PubMed  CAS  Google Scholar 

  • Lee EY, Chang CY, Hu N, Wang YC, Lai CC, Herrup K, Lee WH, Bradley A (1992) Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359: 288–294

    Article  PubMed  CAS  Google Scholar 

  • Lee EY, Hu N, Yuan SS, Cox LA, Bradley A, Lee WH, Herrup K (1994) Dual roles of the retinoblastoma protein in cell cycle regulation and neuron differentiation. Genes Dev 8: 2008–2021

    Article  PubMed  CAS  Google Scholar 

  • Linette GP, Li Y, Roth K, Korsmeyer SJ (1996) Cross talk between cell death and cell cycle progression: BCL-2 regulates NFAT-mediated activation. Proc Natl Acad Sci USA 93: 9545–9552

    Article  PubMed  CAS  Google Scholar 

  • Liu YJ, Mason DY, Johnson GD, Abbot S, Gregory CD, Hardie DL, Gordon J, MacLennan IC (1991) Germinal center cells express bd-2 protein after activation by signals which prevent their entry into apoptosis. Eur J Immunol 21: 1905–1910

    Article  PubMed  CAS  Google Scholar 

  • Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362: 847–849

    Google Scholar 

  • Ludlow JW, Glendening CL, Livingston DM, DeCaprio JA (1993) Specific enzymatic dephosphorylation of the retinoblastoma protein. Mol Cell Biol 13: 367–372

    PubMed  CAS  Google Scholar 

  • Lundgren K, Walworth N, Booher R, Dembski M, Kirschner M, Beach D (1991) Mik1 and weel cooperate in the inhibitory tyrosine phosphorylation of cdc2. Cell 64: 1111–1122

    Article  PubMed  CAS  Google Scholar 

  • Maheswaran S, McCormack JE, Sonenshein GE (1991) Changes in phosphorylation of myc oncogene and RB antioncogene protein products during growth arrest of the murine lymphoma WEHI 231 cell line. Oncogene 6: 1965–1971

    PubMed  CAS  Google Scholar 

  • Martin DP, Ito A, Horigome K, Lampe PA, Johnson EJ (1992) Biochemical characterization of programmed cell death in NGF-deprived sympathetic neurons. J Neurobiol 23: 1205–1220

    Article  PubMed  CAS  Google Scholar 

  • Mazel S, Burtrum D, Petrie HT (1996) Regulation of cell division cycle progression by bd-2 expression: a potential mechanism for inhibition of programmed cell death. J Exp Med 183: 2219–2226

    Article  PubMed  CAS  Google Scholar 

  • Meikrantz W, Schlegel R (1995) Apoptosis and the cell cycle. J Cell Biochem 58:160–174 Meikrantz W, Schlegel R (1996) Suppression of apoptosis by dominant negative mutants of cyclin-dependent protein kinases. J Biol Chem 271: 10205–10209

    Google Scholar 

  • Meikrantz W, Gisselbrecht S, Tam SW, Schlegel R (1994) Activation of cyclin A-dependent protein kinases during apoptosis. Proc Natl Acad Sci USA 91: 3754–8

    Article  PubMed  CAS  Google Scholar 

  • Morgenbesser SD, Williams BO, Jacks T, DePinho RA (1994) p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature 371: 72–74

    Google Scholar 

  • Merritt AJ, Potten CS, Watson AJ, Loh DY, Nakayama K, Nakayama K, Hickman JA (1995) Differential expression of bd-2 in intestinal epithelia. Correlation with attenuation of apoptosis in colonic crypts and the incidence of colonic neoplasia. J Cell Sci 108: 2261–2271

    Google Scholar 

  • Mesner PW, Winters TR, Green SH (1992) Nerve growth factor withdrawal-induced cell death in neuronal PC12 cells resembles that in sympathetic neurons. J Cell Biol 119: 1669–1680

    Article  PubMed  CAS  Google Scholar 

  • Morgan DO (1995) Principles of CDK regulation. Nature 374: 131–134

    Article  PubMed  CAS  Google Scholar 

  • Neiman PE, Blish C, Heydt C, Loring G, Thomas SJ (1994) Loss of cell cycle controls in apoptotic lymphoblasts of the bursa of Fabricius. Mol Biol Cell 5: 763–772

    PubMed  CAS  Google Scholar 

  • Nevins JR (1992) E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258: 424–429

    Article  PubMed  CAS  Google Scholar 

  • Nigg EA (1995) Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays 17: 471–480

    Article  PubMed  CAS  Google Scholar 

  • Otsuki Y, Misaki O, Sugimoto O, Ito Y, Tsujimoto Y, Akao Y (1994) Cyclic bc1–2 gene expression in human uterine endometrium during menstrual cycle. Lancet 344: 28–29

    Article  PubMed  CAS  Google Scholar 

  • Pandey S, Wang E (1995) Cells en route to apoptosis are characterized by the upregulation of c-fos, c-myc, c-jun, cdc2, and RB phosphorylation, resembling events of early cell-cycle traverse. J Cell Biochem 58: 135–150

    Article  PubMed  CAS  Google Scholar 

  • Pellicciari C, Bottone MG, Schaack V, Barni S, Manfredi AA (1996) Spontaneous apoptosis of thymocytes is uncoupled with progression through the cell cycle. Exp Cell Res 229: 370–377

    Article  PubMed  CAS  Google Scholar 

  • Qin XQ, Livingston DM, Kaelin WJ, Adams PD (1994) Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc Natl Acad Sci USA 91: 10918–10922

    Article  PubMed  CAS  Google Scholar 

  • Rubin LL, Philpott KL, Brooks SF (1993) Apoptosis–the cell cycle and cell death. Curr Biol 3: 391–394

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly LA, Huang DC, Strasser A (1996) The cell death inhibitor Bd-2 and its homologues influence control of cell cycle entry. EMBO J 15: 6979–6990

    PubMed  Google Scholar 

  • Ryan JJ, Danish R, Gottlieb CA, Clarke MF (1993) Cell cycle analysis of p53-induced cell death in murine erythroleukemia cells. Mol Cell Biol 13: 711–719

    PubMed  CAS  Google Scholar 

  • Sala A, Casella I, Grasso L, Bellon T, Reed JC, Miyashita T, Peschle C (1996) Apoptotic response to oncogenic stimuli: cooperative and antagonistic interactions between c-myb and the growth suppressor p53. Cancer Res 56: 1991–1996

    PubMed  CAS  Google Scholar 

  • Sellins KS, Cohen JJ (1987) Gene induction by gamma-irradiation leads to DNA fragmentation in lymphocytes. J Immunol 139: 3199–3206

    PubMed  CAS  Google Scholar 

  • Shan B, Lee WH (1994) Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol Cell Biol 14: 8166–173

    PubMed  CAS  Google Scholar 

  • Sherr CJ (1996) Cancer cell cycles. Science 274: 1672–1677

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ, Roberts JM (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9: 1149–1163

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Nishioka WK, Th’ng J, Bradbury EM, Litchfield DW, Greenberg AH (1994) Premature p34cdc2 activation required for apoptosis. Science 263: 1143–1145

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Chen G, He D, Bosc DG, Litchfield DW, Greenberg AH (1996) Granzyme B induces apoptosis and cyclin A-associated cyclin-dependent kinase activity in all stages of the cell cycle. J Immunol 157: 2381–2385

    PubMed  CAS  Google Scholar 

  • Strasser A, Harris AW, Jacks T, Cory S (1994) DNA damage can induce apoptosis in proliferating lymphoid cells via p53-independent mechanisms inhibitable by Bd-2. Cell 79: 329–339

    Article  PubMed  CAS  Google Scholar 

  • Taylor D, Badiani P, Weston K (1996) A dominant interfering Myb mutant causes apoptosis in T cells. Genes Dev 10: 2732–2744

    Article  PubMed  CAS  Google Scholar 

  • Thomaidou D, Mione MC, Cavanagh JF, Parnavelas JG (1997) Apoptosis and its relation to the cell cycle in the developing cerebral cortex. J Neurosci 17: 1075–1085

    PubMed  CAS  Google Scholar 

  • Stern JB, Smith KA (1986) Interleukin-2 induction of T-cell G1 progression and c-myb expression. Science 233: 203–206

    Article  PubMed  CAS  Google Scholar 

  • Thompson MA, Ramsay RG (1995) Myb: an old oncoprotein with new roles. Bioessays 17: 341–350

    Article  PubMed  CAS  Google Scholar 

  • Walker NI, Bennett RE, Kerr JFR (1989) Cell death by apoptosis during involution of the lactating breast in mice and rats. Am J Anat 185: 19–32

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Walsh K (1996) Resistance to apoptosis conferred by Cdk inhibitors during myocyte differentiation. Science 273: 359–361

    Article  PubMed  CAS  Google Scholar 

  • Waters CM, Littlewood TD, Hancock DC, Moore JP, Evan GI (1991) C-myc protein expression in untransformed fibroblasts. Oncogene 6: 797–805

    PubMed  CAS  Google Scholar 

  • Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81: 323–330

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Levine AJ (1994) p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci USA 91: 3602–3606

    Article  PubMed  CAS  Google Scholar 

  • Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284: 555–556

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Ohyama H (1988) Radiation-induced interphase death of rat thymocytes is internally programmed (apoptosis). Int J Radiat Biol 53: 65–75

    Article  CAS  Google Scholar 

  • Zhang P, Liegeois NJ, Wong C, Finegold M, Hou H, Thompson JC, Silverman A, Harper JW, DePinho RA, Elledge SJ (1997) Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature 387: 151–158

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Okan I, Szekely L, Klein G, Wiman KG (1995) bd-2 inhibits wild type p53-triggered apoptosis but not G1 cell cycle arrest and transactivation of WAF1 and bax. Cell Growth Differ 6: 1071–1075

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brady, H.J.M., Gil-Gómez, G. (1999). The Cell Cycle and Apoptosis. In: Kumar, S. (eds) Apoptosis: Biology and Mechanisms. Results and Problems in Cell Differentiation, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69184-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69184-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21623-1

  • Online ISBN: 978-3-540-69184-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics