Skip to main content

Granule-Mediated Cytotoxicity

  • Chapter
Apoptosis: Biology and Mechanisms

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 23))

Abstract

Cytotoxic T lymphocytes (CTLs) represent the body’s primary line of defence against virus-infected and tumourigenic cells, and may play a role in autoimmune diseases and organ transplant rejection. CTLs are able to carry out their essential functions due to their ability to specifically recognize and destroy “foreign” cells. In this case, foreign may be defined as self cells which have mutated or become infected, or, alternatively, if specificity is somehow disrupted, they may be normal self cells. Whatever the case, CTLs may use one of two mechanisms to destroy the recognized target cell — one which is granule based, and one mediated by cell surface receptors on the target cell, for which the ligand is expressed on the CTL (see Chap. by Trapani and Jans in this Volume). This chapter focuses on mechanisms of target cell destruction during granule-mediated cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdelhaleem MM, Hatskelzon L, Dalal BI, Gerrard JM, Greenberg AH (1991) Leukophysin: a 28kD granule membrane protein of leukocytes. J Immunol 147: 3053–3059

    PubMed  CAS  Google Scholar 

  • Abdelhaleem MM, Hameed S, Klassen D, Greenberg AH (1996) Leukophysin: an RNA helicase A-related molecule identified in cytotoxic T cell granules and vesicles. J Immunol 156: 2026–2035

    PubMed  CAS  Google Scholar 

  • Allbritton NL, Verret CR, Wolley RC, Eisen HN (1988) Calcium ion concentrations and DNA fragmentation in target cell destruction by murine cloned cytotoxic T lymphocytes. J Exp Med 167: 514–527

    Article  PubMed  CAS  Google Scholar 

  • Anderson P, Nagler-Anderson C, O’Brien C, Levine H, Watkins S, Slayter HS, Blue M-L, Schlossman SF (1990) A monoclonal antibody reactive with a 15-kDa cytoplasmic granule-associated protein defines a subpopulation of CD8’ T lymphocytes. J Immunol 144: 574–582

    PubMed  CAS  Google Scholar 

  • Anel A, Richieri GV, Kleinfeld AM (1994) A tyrosine phosphorylation requirement for cytotoxic T lymphocyte degranulation. J Biol Chem 269: 9506–9513

    PubMed  CAS  Google Scholar 

  • Atkinson EA, Barry M, Darmon AJ, Shostak I, Turner PC, Moyer RW, Bleackley RC (1998) Cytotoxic T lymphocyte assisted suicide: Caspase-3 activation is primarily the result of the direct action of granzyme B. (in press) J. Biol. Chem.

    Google Scholar 

  • Blakely A, Gorman K, Ostergaard H, Svoboda K, Liu C-C, Young JD-E, Clark WR (1987) Resistance of cloned cytotoxic T lymphocytes to cell-mediated cytotoxicity. J Exp Med 166: 1070–1083

    Article  PubMed  CAS  Google Scholar 

  • Bleackley RC, Duggan B, Ehrman N, Lobe CG (1988a) Isolation of two cDNA sequences which encode cytotoxic cell proteases. FEBS Lett 234: 153–159

    Article  PubMed  CAS  Google Scholar 

  • Bleackley RC, Lobe CG, Havele C, Shaw J, Pohajdak B, Redmond M, Letellier M, Paetkau VH (1988b) A molecular-genetic analysis of cytotoxic T lymphocyte function. Ann NY Acad Sci 532: 359–366

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal R, Millard PJ, Henkart MP, Reynolds CW, Henkart PA (1984) Liposomes as targets for granule cytolysin from cytotoxic large granular lymphocyte tumors. Proc Natl Acad Sci USA 81: 5551–5555

    Article  PubMed  CAS  Google Scholar 

  • Bochan MR, Goebel WS, Brahmi Z (1995) Stably transfected antisense granzyme B and perforin constructs inhibit human granule-mediated lytic ability. Cell Immunol 164: 234–239

    Article  PubMed  CAS  Google Scholar 

  • Boldin MP, Goncharov TM, Goltsev YV, Wallach D (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85: 803–815

    Google Scholar 

  • Brogan M, Targan S (1986) Evidence for involvement of serine proteases in the late stages of the natural killer cell lytic reaction. Cell Immunol 103: 426–433

    Article  PubMed  CAS  Google Scholar 

  • Brunet JF, Dosseto M, Denizot F, Mattei M-G, Clark WR, Haqqi TM, Ferrier P, Nabholz M, Schmitt-Verhulst A-M, Luciani M-F, Golstein P (1986) The inducible cytotoxic T-lymphocyteassociated gene transcript CTLA-1 sequence and gene localization to mouse chromosome 14. Nature 322: 268–271

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne RD, Morgan A (1993) Regulated exocytosis. Biochem J 293: 305–316

    PubMed  CAS  Google Scholar 

  • Burkhardt JK, Hester S, Argon Y (1989) Two proteins targeted to the same lytic granule compartment undergo very different posttranslational processing. Proc Natl Acad Sci USA 86: 7128–7132

    Article  PubMed  CAS  Google Scholar 

  • Burkhardt JK, Hester S, Lapham CK, Argon Y (1990) The lytic granules of natural killer cells are dual-function organelles combining secretory and prelysosomal compartments. J Cell Biol 111: 2327–2340

    Article  PubMed  CAS  Google Scholar 

  • Burkhardt JK, McIlvain J Jr., Sheetz MP, Argon Y (1993) Lytic granules from cytotoxic T cells exhibit kinesin-dependent motility on microtubules in vitro. J Cell Sci 104: 151–162

    PubMed  CAS  Google Scholar 

  • Burns K, Helgason CD, Bleackley RC, Michalak M (1992) Calreticulin in T-lymphocytes: identification of calreticulin in T-lymphocytes and demonstration that activation of T cells correlates with increased levels of calreticulin mRNA and protein. J Biol Chem 267: 19039–19042

    PubMed  CAS  Google Scholar 

  • Burns K, Duggan B, Atkinson EA, Famulski KS, Nemer M, Bleackley RC, Michalak M (1994) Modulation of gene expression by calreticulin binding to the glucocorticoid receptor. Nature 367: 476–480

    Article  PubMed  CAS  Google Scholar 

  • Cantrell D (1996) T cell antigen receptor signal transduction pathways. Annu Rev Immunol 14: 259–274

    Article  PubMed  CAS  Google Scholar 

  • Caputo A, Fahey D, Lloyd C, Vozab R, McCairns E, Rowe PB (1988) Structure and differential mechanisms of regulation of expression of a serine protease gene in activated human T lymphocytes. J Biol Chem 263: 6363–6369

    PubMed  CAS  Google Scholar 

  • Caputo A, Sauer DEF, Rowe PB (1990) Nucleotide sequence and genomic organization of a human T lymphocyte serine protease gene. J Immunol 145: 737–744

    PubMed  CAS  Google Scholar 

  • Caputo A, Garner RS, Winkler U, Hudig D, Bleackley RC (1993) Activation of recombinant murine cytotoxic cell proteinase-1 requires deletion of an amino-terminal dipeptide. J Biol Chem 268: 17672–17675

    PubMed  CAS  Google Scholar 

  • Caputo A, James MNG, Powers JC, Hudig D, Bleackley RC (1994) Conversion of the substrate specificity of mouse proteinase granzyme B. Nat Struct Biol 1: 364–367

    Article  PubMed  CAS  Google Scholar 

  • Cohen JJ, Duke RC, Chervenak R, Sellins KS, Olson LK (1985) DNA fragmentation in targets of CTL: an example of programmed cell death in the immune system. Adv Exp Med Biol 184: 493–508

    Article  PubMed  CAS  Google Scholar 

  • Darmon AJ, Ehrman N, Caputo A, Fujinaga J, Bleackley RC (1994) The cytotoxic T cell proteinase granzyme B does not activate interleukin-113-converting enzyme. J Biol Chem 269: 3204332046

    Google Scholar 

  • Darmon AJ, Nicholson DW, Bleackley RC (1995) Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature 377: 446–448

    Article  PubMed  CAS  Google Scholar 

  • Darmon AJ, Ley TJ, Nicholson DW, Bleackley RC (1996) Cleavage of CPP32 by granzyme B represents a critical role for granzyme B in the induction of target cell DNA fragmentation. J Biol Chem 271: 21709–21712

    Article  PubMed  CAS  Google Scholar 

  • Dennert G, Podack ER (1983) Cytolysis by H-2-specific T killer cells: assembly of tubular complexes on target membranes. J Exp Med 157: 1483–1495

    Article  PubMed  CAS  Google Scholar 

  • Dourmashkin RR, Deteix P, Simone CB, Henkart P (1980) Electron microscopic demonstration of lesions in target cell membranes associated with antibody-dependent cellular cytotoxicity. Clin Exp Immunol 42: 554–560

    PubMed  CAS  Google Scholar 

  • Duan H, Chinnaiyan AM, Hudson PL, Wing JP, He W-W, Dixit VM (1996a) ICE-LAPS, a novel mammalian homologue of the Caenorhabditis elegans cell death protein Ced-3 is activated during Fas-and tumor necrosis factor-induced apoptosis. J Biol Chem 271: 1621–1625

    Article  PubMed  CAS  Google Scholar 

  • Duan H, Orth K, Chinnaiyan AM, Poirier GG, Froelich CJ, He W-W, Dixit VM (1996b) ICE-LAP6, a novel member of the ICE/Ced-3 gene family, is activated by the cytotoxic T cell protease granzyme B. J Biol Chem 271: 16720–16724

    Article  PubMed  CAS  Google Scholar 

  • Duke RC, Chervenak R, Cohen JJ (1983) Endogenous endonuclease-induced DNA fragmentation: an early event in cell-mediated cytolysis. Proc Natl Acad Sci USA 80: 6361–6365

    Article  PubMed  CAS  Google Scholar 

  • Duke RC, Persechini PM, Chang S, Liu C-C, Cohen JJ, Young JD-E (1989) Purified perforin induces target cell lysis but not DNA fragmentation. J Exp Med 170: 1451–1456

    Article  PubMed  CAS  Google Scholar 

  • Dupuis M, Schaerer E, Krause KH, Tschopp J (1993) The calcium-binding protein calreticulin is a major constituent of lytic granules in cytolytic T lymphocytes. J Exp Med 177: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Ebnet K, Chluba de Tapia J, Hurtenbach U, Kramern MD, Simon MM (1991) In vivo primed mouse T cells selectively express T cell-specific serine proteinase-1 and the proteinase-like molecules granzyme B and C. Int Immunol 3: 9–19

    Article  PubMed  CAS  Google Scholar 

  • Ebnet K, Hausmann M, Lehmann-Grube F, Mullbacher A, Kopf M, Lamers M, Simon MM (1995) Granzyme A-deficient mice retain potent cell-mediated cytotoxicity. EMBO J 14: 4230–4239

    PubMed  CAS  Google Scholar 

  • Faucheu C, Diu A, Chan AW, Blanchet AM, Miossec C, Herve F, Collard Dutilleul V, Gu Y, Aldape RA, Lippke JA, Rocher C, Su MS-S, Livingston DJ, Hercend T, Lalanne J-L (1995) A novel human protease similar to the interleukin-1(3 converting enzyme induces apoptosis in transfected cells. EMBO J 14: 1914–1922

    PubMed  CAS  Google Scholar 

  • Faucheu C, Blanchet AM, Collard-Dutilleul V, Lalanne J-L, Diu-Hercend A (1996) Identification of a cysteine protease closely related to interleukin-13-converting enzyme. Eur J Biochem 236: 207–213

    Article  PubMed  CAS  Google Scholar 

  • Fernandes-Alnemri T, Litwack G, Alnemri ES (1994) CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1(3-converting enzyme. J Biol Chem 269: 30761–30764

    PubMed  CAS  Google Scholar 

  • Fernandes-Alnemri T, Armstrong RC, Krebs J, Srinivasula SM, Wang L, Bullrich F, Fritz LC, Trapani JA, Tomaselli KJ, Litwack G, Alnemri ES (1996) In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proc Natl Acad Sci USA 93: 7464–7469

    Article  PubMed  CAS  Google Scholar 

  • Froelich CJ, Orth K, Turbov J, Seth P, Gottleib R, Babior B, Shah GM, Bleackley RC, Dixit VM, Hanna W (1996) New paradigm for lymphocyte granule mediated cytotoxicity: target cells bind and internalize granzyme B but an endosomolytic agent is necessary for cytosolic delivery and subsequent apoptosis. J Biol Chem 271: 29073–29079

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Sanz JA, MacDonald HR, Jenne DE, Tschopp J, Nabholz M (1990) Cell specificity of granzyme gene expression. J Immunol 145: 3111–3118

    PubMed  CAS  Google Scholar 

  • Geiger B, Rosen D, Berke G (1982) Spatial relationships of microtubule-organizing centers and the contact area of cytotoxic T lymphocytes. J Cell Biol 95: 137–143

    Article  PubMed  CAS  Google Scholar 

  • Gershenfeld HK, Weissman IL (1986) Cloning of a cDNA for a T cell-specific serine protease from a cytotoxic T lymphocyte. Science 232: 854–858

    Article  PubMed  CAS  Google Scholar 

  • Gershenfeld HK, Hershberger RJ, Shows TB, Weissman IL (1988) Cloning and chromosomal assignment of a human cDNA encoding a T cell-and natural killer cell-specific trypsin-like serine protease. Proc Natl Acad Sci USA 85: 1184–1188

    Article  PubMed  CAS  Google Scholar 

  • Golstein P (1974) Sensitivity of cytotoxic T cells to T cell-mediated cytotoxicity. Nature 252: 81–86

    Article  PubMed  CAS  Google Scholar 

  • Griffiths GM (1995) The cell biology of CTL killing. Curr Opin Immunol 7: 343–348

    Article  PubMed  CAS  Google Scholar 

  • Griffiths GM, Isaaz S (1993) Granzymes A and B are targeted to the lytic granules of lymphocytes by the mannose-6-phosphate receptor. J Cell Biol 120: 885–896

    Article  PubMed  CAS  Google Scholar 

  • Groscurth P, Qiao BY, Podack ER, Hengartner H (1987) Cellular localization of perforin 1 in murine cloned cytotoxic T lymphocytes. J Immunol 138: 2749–2752

    PubMed  CAS  Google Scholar 

  • Gu Y, Sarnecki C, Fleming MA, Lippke JA, Bleackley RC, Su MS-S (1996) Processing and activation of CMH-1 by granzyme B. J Biol Chem 271: 10816–10820

    Article  PubMed  CAS  Google Scholar 

  • Haddad P, Jenne D, Tschopp J, Clement MV, Mathieu Mahul D, Sasportes M (1991) Structure and evolutionary origin of the human granzyme H gene. Int Immunol 3: 57–66

    Article  PubMed  CAS  Google Scholar 

  • Hameed A, Lowrey DM, Lichtenheld M, Podack ER (1988) Characterization of three serine esterases isolated from human IL-2 activated killer cells. J Immunol 141: 3142–3147

    PubMed  CAS  Google Scholar 

  • Hayes MP, Berrebi GA, Henkart PA (1989) Induction of target cell DNA release by the cytotoxic T lymphocyte granule protease granzyme A. J Exp Med 170: 933–946

    Article  PubMed  CAS  Google Scholar 

  • Helgason CD, Atkinson EA, Pinkoski MJ, Bleackley RC (1995) Proteinases are involved in both DNA fragmentation and membrane damage during CTL-mediated target cell killing. Exp Cell Res 218: 50–56

    Article  PubMed  CAS  Google Scholar 

  • Henkart PA (1985) Mechanism of lymphocyte mediated cytotoxicity. Annu Rev Immunol 3: 3158

    Article  Google Scholar 

  • Henkart PA, Berrebi GA, Takayama H, Munger WE, Sitkovsky MV (1987) Biochemical and functional properties of serine esterases in acidic cytoplasmic granules of cytotoxic T lymphocytes. J Immunol 139: 2398–2405

    PubMed  CAS  Google Scholar 

  • Heusel JW, Wesselschmidt RL, Shresta S, Russell JH, LeyTJ (1994) Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 76: 977–987

    CAS  Google Scholar 

  • Hudig D, Allison NJ, Pickett TM, Winkler U, Kam C-M, Powers JC (1991) The function of lymphocyte proteases: inhibition and restoration of granule-mediated lysis with isocoumarin serine protease inhibitors. J Immunol 147: 1360–1368

    PubMed  CAS  Google Scholar 

  • Irmler M, Hertig S, MacDonald HR, Sadoul R, Becherer JD, Proudfoot A, Solari R, Tschopp J (1995) Granzyme A is an interleukin 1(3-converting enzyme. J Exp Med 181: 1917–1922

    Article  PubMed  CAS  Google Scholar 

  • Isaaz S, Baetz K, Olsen K, Podack E, Griffiths GM (1995) Serial killing by cytotoxic T lymphocytes: T cell receptor triggers degranulation, re-filling of the lytic granules and secretion of lytic proteins via a non-granule pathway. Eur J Immunol 25: 1071–1079

    Google Scholar 

  • Ishiura S, Matsuda K, Koizumi H, Tsukahara T, Arahata K, Sugita H (1990) Calcium is essential for both the membrane binding and lytic activity of pore-forming protein (perforin) from cytotoxic T-lymphocytes. Mol Immunol 27: 803–807

    Article  PubMed  CAS  Google Scholar 

  • Jenne D, Rey C, Haefliger JA, Qiao BY, Groscurth P, Tschopp J (1988a) Identification and sequencing of cDNA clones encoding the granule-associated serine proteases granzymes D, E, and F of cytolytic T lymphocytes. Proc Natl Acad Sci USA 85: 4814–4818

    Google Scholar 

  • Jenne D, Rey C, Masson D, Stanley KK, Herz J, Plaetinck G, Tschopp J (1988b) cDNA cloning of granzyme C, a granule-associated serine protease of cytolytic T lymphocytes. J Immunol 140: 318–323

    Google Scholar 

  • Jenne DE, Masson D, Zimmer M, Haefliger JA, Li WH, Tschopp J (1989) Isolation and complete structure of the lymphocyte serine protease granzyme G, a novel member of the granzyme multigene family in murine cytolytic T lymphocytes: evolutionary origin of lymphocyte proteases. Biochemistry 28: 7953–7961

    Article  PubMed  CAS  Google Scholar 

  • Jiang S, Persechini PM, Perussia B, Young JD-E (1989) Resistance of cytolytic lymphocytes to perforin-mediated killing: murine cytotoxic T lymphocytes and human natural killer cells do not contain functional soluble homologous restriction factor or other specific soluble protective factors. J Immunol 143: 1453–1460

    PubMed  CAS  Google Scholar 

  • Kagi D, Ledermann B, Burki K, Seiler P, Odermatt B, Olsen KJ, Podack ER, Zinkernagel RM, Hengartner H (1994a) Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369: 31–37

    Article  PubMed  CAS  Google Scholar 

  • Kagi D, Vignaux F, Ledermann B, Burki K, Depraetere V, Nagata S, Hengartner H, Golstein P (1994b) Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 265: 528–530

    Article  PubMed  CAS  Google Scholar 

  • Kaiser M, Hoskin DW (1992) Expression and utilization of chymotrypsin-like but not trypsin-like serine protease enzymes by nonspecific T killer cells activated by anti-CD3 monoclonal antibody. Cell Immunol 141: 84–98

    Article  PubMed  CAS  Google Scholar 

  • Kamens J, Paskind M, Hugunin M, Talanian RV, Allen H, Banach D, Bump N, Hackett M, Johnston CG, Li P, Mankovich JA, Terranova M, Ghayur T (1995) Identification and characterization of ICH-2, a novel member of the interleukin-1(3-converting enzyme family of cysteine proteases. J Biol Chem 270: 15250–15256

    Article  PubMed  CAS  Google Scholar 

  • Kataoka T, Takaku K, Magae J, Shinohara N, Takayama H, Kondo S, Nagai K (1994) Acidification is essential for maintaining the structure and function of lytic granules of CTL: effect of concanamycin A, an inhibitor of vacuolar type H `-ATPase, on CTL-mediated cytotoxicity. J Immunol 153: 3938–3947

    PubMed  CAS  Google Scholar 

  • Kelly RB (1985) Pathways of protein secretion in eukaryotes. Science 230: 25–32

    Article  PubMed  CAS  Google Scholar 

  • Kojima H, Shinohara N, Hanaoka S, Someya-Shirota Y, Takagaki Y, Ohno H, Saito T, Katayama T, Yagita H, Okumura K, Shinkai Y, Alt FW, Matsuzawa A, Yonehara S, Takayama H (1994) Two distinct pathways of specific killing revealed by perforin mutant cytotoxic T lymphocytes. Immunity 1: 357–364

    Article  PubMed  CAS  Google Scholar 

  • Kranz DM, Eisen HN (1987) Resistance of cytotoxic T lymphocytes to lysis by a clone of cytotoxic T lymphocytes. Proc Natl Acad Sci USA 84: 3375–3379

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Kinoshita M, Noda M, Copeland NG, Jenkins NA (1994) Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-1(3-converting enzyme. Genes Dev 8: 1613–1626

    Article  PubMed  CAS  Google Scholar 

  • Kummer JA, Kamp AM, Citarella F, Horrevoets AJG, Hack CE (1996) Expression of human recombinant granzyme A zymogen and its activation by the cysteine protease cathepsin C. J Biol Chem 271: 9281–9286

    Article  PubMed  CAS  Google Scholar 

  • Kupfer A, Dennert G (1984) Reorientation of the microtubule-organizing center and the Golgi apparatus in cloned cytotoxic lymphocytes triggered by binding to lysable target cells. J Immunol 133: 2762–2766

    PubMed  CAS  Google Scholar 

  • Kupfer A, Dennert G, Singer SJ (1985) The reorientation of the Golgi apparatus and the microtubule-organizing center in the cytotoxic effector cell is a prerequisite in the lysis of bound target cells. J Mol Cell Immunol 2: 37–49

    PubMed  CAS  Google Scholar 

  • Kwon BS, Kestler D, Lee E, Wakulchik M, Young JD-E (1988) Isolation and sequence analysis of serine protease cDNAs from mouse cytolytic T lymphocytes. J Exp Med 168: 1839–1854

    Article  PubMed  CAS  Google Scholar 

  • Lahti JM, Xiang J, Heath LS, Campana D, Kid VJ (1995) PITSLRE protein kinase activity is associated with apoptosis. Mol Cell Biol 15: 1–11

    PubMed  CAS  Google Scholar 

  • Lang P, Guizani L, Vitte-Mony I, Stancou R, Dorseuil 0, Gacon G, Bertoglio J (1992) ADPribosylation of the ras-related, GTP-binding protein RhoA inhibits lymphocyte-mediated cytotoxicity. J Biol Chem 267: 11677–11680

    Google Scholar 

  • Liu C-C, Perussia B, Cohn ZA, Young JD-E (1986) Identification and characterization of a pore-forming protein of human peripheral blood natural killer cells. J Exp Med 164: 2061–2076

    Article  PubMed  CAS  Google Scholar 

  • Liu C-C, Steffen M, King F, Young JD-E (1987) Identification, isolation, and characterization of a novel cytotoxin in murine cytolytic lymphocytes. Cell 51: 393–403

    Article  PubMed  CAS  Google Scholar 

  • Liu C-C, Jiang S, Persechini PM, Zychlinsky A, Kaufman Y, Young JD-E (1989) Resistance of cytolytic lymphocytes to perforin-mediated killing: induction of resistance correlates with increase in cytotoxicity. J Exp Med 169: 2211–2225

    Article  PubMed  CAS  Google Scholar 

  • Liu C-C, Walsh CM, Young JD-E (1995) Perforin: structure and function. Immunol Today 16: 194–201

    Article  PubMed  Google Scholar 

  • Lobe CG, Finlay BB, Paranchych W, Paetkau VH, Bleackley RC (1986a) Novel serine proteases encoded by two cytotoxic T lymphocyte-specific genes. Science 232: 858–861

    Article  PubMed  CAS  Google Scholar 

  • Lobe CG, Havele C, Bleackley RC (1986b) Cloning of two genes that are specifically expressed in activated cytotoxic T lymphocytes. Proc Natl Acad Sci USA 83: 1448–1452

    Article  PubMed  CAS  Google Scholar 

  • Lobe CG, Upton C, Duggan B, Ehrman N, Letellier M, Bell J, McFadden G, Bleackley RC (1988) Organization of two genes encoding cytotoxic T lymphocyte-specific serine proteases CCPI and CCPII. Biochemistry 27: 6941–6946

    Article  PubMed  CAS  Google Scholar 

  • Lowin B, Hahne M, Mattmann C, Tschopp J (1994) Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 370: 650–652

    Article  PubMed  CAS  Google Scholar 

  • Martin DE, Zalman LS, Muller-Eberhard HJ (1988) Induction of expression of a cell-surface homologous restriction factor upon anti-CD3 stimulation of human peripheral lymphocytes. Proc Natl Acad Sci USA 85: 213–217

    Article  PubMed  CAS  Google Scholar 

  • Martin SJ, Amarante-Mendes GP, Shi L, Chuang TH, Casiano CA, O’Brien GA, Fitzgerald P, Tan EM, Bokoch GM, Greenberg AH, Green DR (1996a) The cytotoxic cell protease granzyme B initiates apoptosis in a cell-free system by proteolytic processing and activation of the ICE/ CED-3 family protease, CPP32, via a novel two-step mechanism. EMBO J 15: 2407–2416

    Google Scholar 

  • Masson D, Tschopp J (1985) Isolation of a lytic, pore-forming protein (perforin) from cytolytic T-lymphocytes. J Biol Chem 260: 9069–9072

    PubMed  CAS  Google Scholar 

  • Masson D, Tschopp J (1987) A family of serine esterases in lytic granules of cytolytic T lymphocytes. Cell 49: 679–685

    Article  PubMed  CAS  Google Scholar 

  • Masson D, Nabholz M, Estrade C, Tschopp J (1986a) Granules of cytolytic T-lymphocytes contain two serine esterases. EMBO J 5: 1595–1600

    PubMed  CAS  Google Scholar 

  • Masson D, Zamai M, Tschopp J (1986b) Identification of granzyme A isolated from cytotoxic Tlymphocyte-granules as one of the proteases encoded by CTL-specific genes. FEBS Lett 208: 84–88

    Article  PubMed  CAS  Google Scholar 

  • Masson D, Peters PJ, Geuze HJ, Borst J, Tschopp J (1990) Interaction of chondroitin sulfate with perforin and granzymes of cytolytic T-cells is dependent on pH. Biochemistry 29: 11229–11235

    Article  PubMed  CAS  Google Scholar 

  • McGuire MJ, Lipsky PE, Thiele DL (1993) Generation of active myeloid and lymphoid granule serine proteases requires processing by the granule thiol protease dipeptidyl peptidase I. J Biol Chem 268: 2458–2467

    PubMed  CAS  Google Scholar 

  • Mcllvain JM, Burkhardt J, Hamm-Alvarez S, Argon Y, Sheetz M (1994) Regulation of kinesin activity by phosphorylation of kinesin-associated proteins. J Biol Chem 269: 19176–19182

    Google Scholar 

  • Meier M, Kwong PC, Fregeau CJ, Atkinson EA, Burrington M, Ehrman N, Sorenson O, Lin CC, Wilkins J, Bleackley RC (1990) Cloning of a gene that. encodes a new member of the human cytotoxic cell protease family. Biochemistry 29: 4042–4049

    Article  PubMed  CAS  Google Scholar 

  • Michalak M, Milner RE, Burns K, Opas M (1992) Calreticulin. Biochem J 285: 681–692

    CAS  Google Scholar 

  • Morgan BP, Dankert JR, Esser AF (1987) Recovery of human neutrophils from complement attack: removal of the membrane attack complex by endocytosis and exocytosis. J Immunol 138: 246–253

    PubMed  CAS  Google Scholar 

  • Muller C, Tschopp J (1994) Resistance of CTL to perforin-mediated lysis: evidence for a lymphocyte membrane protein interacting with perforin. J Immunol 153: 2470–2478

    PubMed  CAS  Google Scholar 

  • Munday NA, Vaillancourt JP, Ali A, Casano FJ, Miller DK, Molineaux SM, Yamin TT, Yu VL, Nicholson DW (1995) Molecular cloning and pro-apoptotic activity of ICEreill and ICE,,1III, members of the ICE/CED-3 family of cysteine proteases. J Biol Chem 270: 15870–15876

    Article  PubMed  CAS  Google Scholar 

  • Munger WE, Berrebi GA, Henkart PA (1988) Possible involvement of CTL granule proteases in target cell DNA breakdown. Immunol Rev 103: 99–109

    Article  PubMed  CAS  Google Scholar 

  • Murphy ME, Moult J, Bleackley RC, Gershenfeld H, Weissman IL, James MNG (1988) Comparative molecular model building of two serine proteinases from cytotoxic T lymphocytes. Proteins 4: 190–204

    Article  PubMed  CAS  Google Scholar 

  • Muzio M, Chinnaiyan AM, Kischkel FC, O’Rourke K, Shevchenko A, Ni J, Scaffidi C, Bretz JD, Zhang M, Gentz R, Mann M, Krammer PH, Peter ME, Dixit VM (1996) FLICE, a novel FADDhomologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85: 817–827

    Article  PubMed  CAS  Google Scholar 

  • Nagler-Anderson C, Verret CR, Firmenich AA, Berne N, Eisen HR (1988) Resistance of primary CD8 cytotoxic T lymphocytes to lysis by cytotoxic granules from cloned T cell lines. J Immunol 141: 3299–3305

    PubMed  CAS  Google Scholar 

  • Nakajima H, Henkart PA (1994) Cytotoxic lymphocyte granzymes trigger a target cell internal disintegration pathway leading to cytolysis and DNA breakdown. J Immunol 152: 1057–1063

    PubMed  CAS  Google Scholar 

  • Nakajima H, Park HL, Henkart PA (1995) Synergistic roles of granzymes A and B in mediating target cell death by rat basophilic leukemia mast cell tumors also expressing cytolysin/ perforin. J Exp Med 181: 1037–1046

    Article  PubMed  CAS  Google Scholar 

  • Nelipovich PA, Nikonova LV, Umansky SR (1988) Inhibition of poly(ADP-ribose) polymerase as a possible reason for activation of Ca2`/Mg2’-dependent endonuclease in thymocytes of irradiated rats. Int J Radiat Biol 53: 749–765

    Article  CAS  Google Scholar 

  • Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA, Munday NA, Raju SM, Smulson ME, Yamin T-T, Yu VL, Miller DK (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376: 37–43

    Article  PubMed  CAS  Google Scholar 

  • Norman JC, Price LS, Ridley AJ, Hall A, Koffer A (1994) Actin filament organization in activated mast cells is regulated by heterotrimeric and small GTP-binding proteins. J Cell Biol 126: 1005–1015

    Article  PubMed  CAS  Google Scholar 

  • Odake S, Kam CM, Narasimhan L, Poe M, Blake JT, Krahenbuhl O, Tschopp J, Powers JC (1991) Human and murine cytotoxic T lymphocyte serine proteases: subsite mapping with peptide thioester substrates and inhibition of enzyme activity and cytolysis by isocoumarins. Biochemistry 30: 2217–2227

    Article  PubMed  CAS  Google Scholar 

  • Ojcius DM, Zheng LM, Sphicas EC, Zychlinsl.y A, Young JD-E (1991) Subcellular localization of perforin and serine esterase in lymphokine-activated killer cells and cytotoxic T cells by immunogold labeling. J Immunol 146: 4427–4432

    CAS  Google Scholar 

  • Orth K, Chinnaiyan AM, Garg M, Froelich CJ, Dixit VM (1996) The CED-3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A. J Biol Chem 271: 16443–16446

    Article  PubMed  CAS  Google Scholar 

  • Pasternack MS, Eisen HN (1985) A novel serine esterase expressed by cytotoxic T lymphocytes. Nature 314: 743–745

    Article  PubMed  CAS  Google Scholar 

  • Pasternack MS, Bleier KJ, McInerney TN (1991) Granzyme A binding to target cell proteins: granzyme A binds to and cleaves nucleolin in vitro. J Biol Chem 266: 14703–14708

    PubMed  CAS  Google Scholar 

  • Persechini PM, Liu C-C, Jiang S, Young JD-E (1989) The lymphocyte pore-forming protein perforin is associated with granules by a pH-dependent mechanism. Immunol Lett 22: 23–27

    Article  PubMed  CAS  Google Scholar 

  • Peters PJ, Borst J, Oorschot V, Fukuda M, Krahenbuhl O, Tschopp J, Slot JW, Geuze HJ (1991) Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J Exp Med 173: 1099–1109

    Article  PubMed  CAS  Google Scholar 

  • Pinkoski MJ, Winkler U, Hudig D, Bleackley RC (1996) Binding of granzyme B in the nucleus of target cells: recognition of an 80-kilodalton protein. J Biol Chem 271: 10225–10229

    Article  PubMed  CAS  Google Scholar 

  • Pinkoski MJ, Hobman M, Heibein JA, Tomaselli K, Li F, Seth P, Froelich CJ, Bleackley RC (1998) Entry and trafficking of granzyme B in target cells during granzyme B-perforin mediated apoptosis. Blood 92: 1–12

    Google Scholar 

  • Podack ER, Young JD-E, Cohn ZA (1985) Isolation and biochemical and functional characteriza- tion of perforin 1 from cytolytic T-cell granules. Proc Natl Acad Sci USA 82: 8629–8633

    Article  PubMed  CAS  Google Scholar 

  • Poe M, Blake JT, Boulton DA, Gammon M, Sigal NH, Wu JK, Zweerink HJ (1991) Human cytotoxic lymphocyte granzyme B: its purification from granules and the characterization of substrate and inhibitor specificity. J Biol Chem 266: 98–103

    PubMed  CAS  Google Scholar 

  • Prendergast JA, Pinkoski M, Wolfenden A, Bleackley RC (1991) Structure and evolution of the cytotoxic cell proteinase genes CCP3, CCP4 and CCP5. J Mol Biol 220: 867–875

    Article  PubMed  CAS  Google Scholar 

  • Prendergast JA, Helgason CD, Bleackley RC (1992) Quantitative polymerase chain reaction analysis of cytotoxic cell proteinase gene transcripts in T cells: pattern of expression is dependent on the nature of the stimulus. J Biol Chem 267: 5090–5095

    PubMed  CAS  Google Scholar 

  • Price LS, Norman JC, Ridley AJ, Koffer A (1994) The small GTPases Rac and Rho as regulators of secretion in mast cells. Curr Biol 5: 68–73

    Article  Google Scholar 

  • Quan LT, Tewari M, O’Rourke K, Dixit V, Snipas SJ, Poirier GG, Ray C, Pickup DJ, Salvesen GS (1996) Proteolytic activation of the cell death protease Yama/CPP32 by granzyme B. Proc Natl Acad Sci USA 93: 1972–1976

    Article  PubMed  CAS  Google Scholar 

  • Redmond MJ, Letellier M, Parker JM, Lobe C, Havele C, Paetkau V, Bleackley RC (1987) A serine protease (CCP1) is sequestered in the cytoplasmic granules of cytotoxic T lymphocytes. J Immunol 139: 3184–3188

    PubMed  CAS  Google Scholar 

  • Reibel L, Dorseuil O, Stancou R, Bertoglio T, Gacon G (1991) A hemopoietic specific gene encoding a small GTP binding protein is overexpressed during T cell activation. Biochem Biophys Res Commun 175: 451–458

    Article  PubMed  CAS  Google Scholar 

  • Rochel N, Cowan JA (1996) Negative cooperativity exhibited by the lytic amino-terminal domain of human perforin: implications for perforin-mediated cell lysis. Chem Biol 3: 31–36

    Article  PubMed  CAS  Google Scholar 

  • Schmid J, Weissman C (1987) Induction of mRNA for a serine protease and a Bthromboglobulin-like protein in mitogen-stimulated human leukocytes. J Immunol 139: 250–256

    PubMed  CAS  Google Scholar 

  • Schmidt RE, MacDermott RP, Bartley G, Bertovich M, Amato DA, Austen KF, Schlossman SF, Stevens RL, Ritz J (1985) Specific release of proteoglycans from human natural killer cells during target lysis. Nature 318: 289–291

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Kam CM, Powers JC, Aebersold R, Greenberg AH (1992a) Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions. J Exp Med 176: 1521–1529

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Kraut RP, Aebersold R, Greenberg AH (1992b) A natural killer cell granule protein that induces DNA fragmentation and apoptosis. J Exp Med 175: 553–566

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Mai S, Israels S, Browne K, Trapani JA, Greenberg AH (1997) Granzyme B ( GraB) autonomously crosses the cell membrane and perforin initiates apoptosis and GraB nuclear localization. J Exp Med 185: 855–866

    Google Scholar 

  • Shiver JW, Henkart PA (1991) A noncytotoxic mast cell tumor line exhibits potent IgE-dependent cytotoxicity after transfection with the cytolysin/perforin gene. Cell 64: 1175–1181

    Article  PubMed  CAS  Google Scholar 

  • Shiver JW, Su L, Henkart PA (1992) Cytotoxicity with target DNA breakdown by rat basophilic leukemia cells expressing both cytolysin and granzyme A. Cell 71: 315–322

    Article  PubMed  CAS  Google Scholar 

  • Shresta S, Heusel JW, MacIvor DM, Wesselschmidt RL, Russell JH, Ley TJ (1995) Granzyme B plays a critical role in cytotoxic lymphocyte-induced apoptosis. Immunol Rev 146: 211–221

    Article  PubMed  CAS  Google Scholar 

  • Simon MM, Hoschutzky H, Fruth U, Simon HG, Kemaer MD (1986) Purification and characterization of a T cell specific serine proteinase (TSP-1) from cloned cytolytic T lymphocytes. EMBO J 5: 3267–3274

    PubMed  CAS  Google Scholar 

  • Simon MM, Kramer MD, Prester M, Gay S (1991) Mouse T-cell associated serine proteinase 1 degrades collagen type IV: a structural basis for the migration of lymphocytes through vascular basement membranes. Immunology 73: 117–119

    PubMed  CAS  Google Scholar 

  • Smyth MJ, Browne KA, Thia KY, Apostolidis VA, Kershaw MH, Trapani JA (1994) Hypothesis: cytotoxic lymphocyte granule serine proteases activate target cell endonucleases to trigger apoptosis. Clin Exp Pharmacol Physiol 21: 67–70

    Article  PubMed  CAS  Google Scholar 

  • Smyth MJ, McGuire Ml, Thia KY (1995) Expression of recombinant human granzyme B: a processing and activation role for dipeptidyl peptidase I. J Immunol 154: 6299–6305

    PubMed  CAS  Google Scholar 

  • Smyth MJ, O’Connor MD, Trapani JA (1996) Granzymes: a variety of serine-protease specificities encoded by genetically distinct subfamilies. J Leuk Biol 60: 555–562

    CAS  Google Scholar 

  • Sower LE, Froelich CJ, Allegretto N, Rose PM, Hanna WD, Klimpel GR (1996) Extracellular activities of human granzyme A: monocyte activation by granzyme A versus a-thrombin. J Immunol 156: 2585–2590

    PubMed  CAS  Google Scholar 

  • Strinivasula SM, Fernandes-Alnemri T, Zangrilli J, Robertson N, Armstrong RC, Wang L, Trapani JA, Tomaselli KJ, Litwack G, Alnemri ES (1996) The Ced-3/interleukin 1(3 converting enzyme-like homolog Mch6 and the lamin-cleaving enzyme Mch2a are substrates for the apoptotic mediator CPP32. J Biol Chem 271: 27099–27106

    Article  Google Scholar 

  • Stevens RL, Otsu K, Weis JH, Tantravahi RV, Austen KF, Henkart PA, Galli MC, Reynolds CW (1987) Co-sedimentation of chondroitin sulfate A glycosaminoglycans and proteoglycans with the cytolytic secretory granules of rat large granular lymphocyte ( LGL) tumor cells, and identification of a mRNA in normal and transformed LGL that encodes proteoglycans. J Immunol 139: 863–868

    Google Scholar 

  • Su B, Bochan MR, Hanna WL, Froelich CJ, Brahmi Z (1994) Human granzyme B is essential for DNA fragmentation of susceptible target cells. Eur J Immunol 24: 2073–2080

    Article  PubMed  CAS  Google Scholar 

  • Suidan HS, Bouvier J, Schaerer E, Stone SR, Monard D, Tschopp 1 (1994) Granzyme A released upon stimulation of cytotoxic T lymphocytes activates the thrombin receptor on neuronal cells and astrocytes. Proc Natl Acad Sci USA 91: 8112–8116

    CAS  Google Scholar 

  • Sun J, Bird CH, Sutton V, McDonald L, Coughlin PB, De Jong TA, Trapani JA, Bird PI (1996) A cytosolic granzyme B inhibitor related to the viral apoptotic regulator cytokine response modifier A is present in cytotoxic lymphocytes. J Biol Chem 271: 27802–27809

    Article  PubMed  CAS  Google Scholar 

  • Talento A, Nguyen M, Law S, Wu JK, Poe M, Blake JT, Patel M, Wu TJ, Manyak CL, Silberklang M, Mark G, Springer M, Sigal NH, Weissman IL, Bleackley RC, Podack ER, Tykocinski ML, Koo GC (1992) Transfection of mouse cytotoxic T lymphocyte with an antisense granzyme A vector reduces lytic activity. J Immunol 149: 4009–4015

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Yoshihara K, Itaya A, Kamiya T, Koide SS (1984) Mechanism of the inhibition of Cat+, Mgt+-dependent endonuclease of bull seminal plasma induced by ADP-ribosylation. J Biol Chem 259: 6579–6585

    PubMed  CAS  Google Scholar 

  • Teraoka H, Yumoto Y, Watanabe F, Tsukada K, Suwa A, Enari M, Nagata S (1996) CPP32/Yama/ apopain cleaves the catalytic component of DNA-dependent protein-kinase in the holoenzyme. FEBS Lett 393: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Tewari M, Quan LT, O’Rourke K, Desnoyers S, Zeng Z, Seidler RD, Poirier GG, Salvesen GS, Dixit VM (1995) Yama/CPP32(3, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81: 801–809

    Article  PubMed  CAS  Google Scholar 

  • Tian Q, Streuli M, Saito H, Schlossman SF, Anderson P (1991) A polyadenylate binding protein localized to the granules of cytolytic lymphocytes induces DNA fragmentation in target cells. Cell 67: 629–639

    Article  PubMed  CAS  Google Scholar 

  • Trapani JA, Klein JL, White PC, Dupont B (1988) Molecular cloning of an inducible serine esterase gene from human cytotoxic lymphocytes. Proc Natl Acad Sci USA 85: 6924–6928

    Article  PubMed  CAS  Google Scholar 

  • Trapani JA, Browne KA, Smyth MJ, Jans DA (1996) Localization of granzyme B in the nucleus: a putative role in the mechanism of cytotoxic lymphocyte-mediated apoptosis. J Biol Chem 271: 4127–4133

    Article  PubMed  CAS  Google Scholar 

  • Tschopp J, Masson D (1987) Inhibition of the lytic activity of perforin (cytolysin) and of late complement components by proteoglycans. Mol Immunol 24: 907–913

    Article  PubMed  CAS  Google Scholar 

  • Tschopp J, Nabholz M (1990) Perforin-mediated target cell lysis by cytolytic T lymphocytes. Annu Rev Immunol 8: 279–302

    Article  PubMed  CAS  Google Scholar 

  • Tschopp J, Masson D, Schafer S (1986) Inhibition of the lytic activity of perforin by lipoproteins. J Immunol 137: 1950–1953

    PubMed  CAS  Google Scholar 

  • Tschopp J, Schafer S, Masson D, Peitsch MC, Heusser C (1989) Phosphorylcholine acts as a Cat’–dependent receptor molecule for lymphocyte perforin. Nature 337: 272–274

    Article  PubMed  CAS  Google Scholar 

  • Vaux DL, Haecker G, Strasser A (1994) An evolutionary perspective on apoptosis. Cell 76: 777–779

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Miura M, Bergeron L, Zhu H, Yuan J (1994) Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell 78: 739–750

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Miura M, Jung Y-k, Zhu H, Gagliardini V, Shi L, Greenberg AH, Yuan J (1996a) Identification and characterization of Ich-3, a member of the interleukin-113 converting enzyme (ICE)/Ced-3 family and an upstream regulator of ICE. J Biol Chem 271: 20580–20587

    Article  PubMed  CAS  Google Scholar 

  • Williams MS, Henkart PA (1994) Apoptotic cell death induced by intracellular proteolysis. J Immunol 153: 4247–4255

    PubMed  CAS  Google Scholar 

  • Yanelli JR, Sullivan JA, Mandell GL, Engelhard VH (1986) Reorientation and fusion of cytotoxic T lymphocyte granules after interaction with target cells as determined by high resolution cinemicrography. J Immunol 136: 377–382

    Google Scholar 

  • Yoshihara K, Tanigawa Y, Koide SS (1974) Inhibition of rat liver Cat+, Mg2+-dependent endonuclease activity by nicotinamide adenine dinucleotide and poly (adenosine diphosphate ribose) synthetase. Biochem Biophys Res Commun 59: 658–665

    Article  PubMed  CAS  Google Scholar 

  • Young JD-E, Hengartner H, Podack ER, Cohn ZA (1986a) Purification and characterization of a cytolytic pore-forming protein from granules of cloned lymphocytes with natural killer activity. Cell 44: 849–859

    Article  PubMed  CAS  Google Scholar 

  • Young JD-E, Leong LG, Liu C-C, Damiano A, Wall DA, Cohn ZA (1986b) Isolation and characterization of a serine esterase from cytolytic T cell granules. Cell 47: 183–194

    Article  PubMed  CAS  Google Scholar 

  • Young JD-E, Clark WR, Liu C-C, Cohn ZA (1987) A calcium-and perforin-independent pathway of killing mediated by murine cytolytic lymphocytes. J Exp Med 166: 1894–1899

    Article  PubMed  CAS  Google Scholar 

  • Yue CC, Reynolds CW, Henkart PA (1987) Inhibition of cytolysin activity in large granular lymphocyte granules by lipids: evidence for a membrane insertion mechanism of lysis. Mol Immunol 24: 647–653

    Article  PubMed  CAS  Google Scholar 

  • Zalman LS, Martin DE, Jung G, Muller-Eberhard HJ (1987) The cytolytic protein of human lymphocytes related to the ninth component (C9) of human complement: isolation from antiCD3-activated peripheral blood mononuclear cells. Proc Natl Acad Sci USA 84: 2426–2429

    Article  PubMed  CAS  Google Scholar 

  • Zalman LS, Brothers MA, Muller-Eberhard HJ (1988) Self-protection of cytotoxic lymphocytes: a soluble form of homologous restriction factor in cytoplasmic granules. Proc Natl Acad Sci USA 85: 4827–4831

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Darmon, A.J., Pinkoski, M.J., Bleackley, R.C. (1999). Granule-Mediated Cytotoxicity. In: Kumar, S. (eds) Apoptosis: Biology and Mechanisms. Results and Problems in Cell Differentiation, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69184-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69184-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21623-1

  • Online ISBN: 978-3-540-69184-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics