Skip to main content

Lipid and Glycolipid Mediators in CD95-Induced Apoptotic Signaling

  • Chapter
Apoptosis: Biology and Mechanisms

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 23))

Abstract

Ceramides play an important role mediating different cell responses such as proliferation, differentiation, growth arrest and apoptosis. They are released upon sphingomyelin hydrolysis which occurs after triggering of a number of cell-surface receptors including CD95. Ceramides generation also regulates glycosphingolipids and gangliosides metabolism. In particular, ganglioside GD3 biosynthesis may represent an important event for the progression of apoptotic signals generated by CD95 in hematopoietic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan D, Kallen KJ (1993) Transport of lipids to the plasma membrane in animal cells. Prog Lipid Res 32: 195–219

    Article  PubMed  CAS  Google Scholar 

  • Boldin MP, Varfolomeev EE, Pancer Z, Mett I, Camonis JH, Wallach D (1995) A novel protein which interacts with the death domain of Fas/APO-1 contains a sequence motif related to the death domain. J Biol Chem 270: 7795–7798

    Article  PubMed  CAS  Google Scholar 

  • Boldin MP, Goncharov TM, Goltsev YV, Wallach D (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor induced cell death. Cell 85: 803–815

    Article  PubMed  CAS  Google Scholar 

  • Boucher LM, Wiegman K, Fütterer A, Pfeffer K, Machleidt T, Schultze S, Mak TW, Krönke M (1995) CD28 signals through acidic sphingomyelinase. J Exp Med 181: 2059–2068

    Article  PubMed  CAS  Google Scholar 

  • Cascino I, papoff G, De Maria R, Testi R, Ruberti G (1996) Fas/APO-1/CD95 receptor lacking the intracytoplasmic signaling domain protects tumor cells from Fas-mediated apoptosis. J Immunol 156: 13–17

    PubMed  CAS  Google Scholar 

  • Cheresh DA, Pierschbacher MD, Herzig MA, Mujoo K (1986) Disialogangliosides GD2 and GD3 are involved in the attachment of human melanoma and neuroblastoma cells to extracellular matrix proteins. J Cell Biol 102: 688–696

    Article  PubMed  CAS  Google Scholar 

  • Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81: 505–512

    Article  PubMed  CAS  Google Scholar 

  • Cifone MG, De Maria R, Roncaioli P, Rippo MR, Azuma M, Lanier LL, Santoni A, Testi R (1994) Apoptotic signaling through CD95 (Fas/APO-1) activates an acidic sphingomyelinase. J Exp Med 180: 1547–1552

    Article  PubMed  CAS  Google Scholar 

  • Cifone MG, Roncaioli P, De Maria R, Camarda G, Santoni A, Ruberti G, Testi R (1995) Multiple signaling originates at the Fas/Apo-1 (CD95) receptor: sequential involvement of phosphatidylcholine-specific phospholipase C and acidic sphingomyelinase in the propagation of the apoptotic signal. EMBO J 14: 5859–5868

    PubMed  CAS  Google Scholar 

  • De Maria R, Lenti L, Malisan F, d’Agostino F, Tomassini B, Zeuner A, Rippo MR, Testi R (1997) Requirement for GD3 ganglioside in CD95- and ceramide-induced apoptosis. Science 277: 1652–1655

    Article  PubMed  Google Scholar 

  • Dippold WG, Dienes HP, Knuth A, Meyer zum Buschenfelde KH (1985) Immunohistochemical localization of ganglioside GD3 in human malignant melanoma, epithelial tumors, and normal tissues. Cancer Res 45: 3699–3705

    PubMed  CAS  Google Scholar 

  • Dobrowsky RT, Kamibayashi C, Mumby MC, Hannun YA (1993) Ceramide activates heterotrimeric protein phasphatase 2A. J Biol Chem 268: 15523–15530

    PubMed  CAS  Google Scholar 

  • Dobrowsky RT, Werner MH, Castellino AM, Chao MV, Hannun YA (1994) Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. Science 265: 1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Dressler KA, Mathias S, Kolesnick RN (1992) Tumor necrosis factor-a activates the sphingomyelin signal transduction pathway in a cell free system. Science 255: 1715–1718

    Article  PubMed  CAS  Google Scholar 

  • Enari M, Hug H, Nagata S (1995) Involvement of an ICE-like protease in Fas-mediated apoptosis. Nature 375: 78–81

    Article  PubMed  CAS  Google Scholar 

  • Haimovitz-Friedman A, Kan CC, Ehleiter D, Persaud RS, McLoughlin M, Fuks Z, Kolesnick RN (1994) Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 180: 525–535

    Article  PubMed  CAS  Google Scholar 

  • Hakomori SI (1994) Role of gangliosides in tumor progression. Prog Brain Res 101: 241–250 Hannun YA (1996) Functions of ceramide in coordinating cellular responses to stress. Science 274: 1855–1859

    Google Scholar 

  • Hannun YA, Obeid LM (1995) Ceramide: an intracellular signal for apoptosis. Trends Biochem Sci 20: 73–77

    Article  PubMed  CAS  Google Scholar 

  • Haraguchi M, Yamashiro S, Yamamoto A, Furukawa K, Takamiya K, Lloyd KO, Shiku H, Furukawa K (1994) Isolation of GD3 synthase gene by expression cloning of GM3 a-2,8sialyltransferase cDNA using anti-GD2 monoclonal antibody. Proc Natl Acad Sci USA 91: 10455–10459

    Article  PubMed  CAS  Google Scholar 

  • Hersey P, JamalO, Henderson C, Zardawi I, D’Alessandro G (1988) Expression of the gangliosides GM3, GD3 and GD2 in tissue sections of normal skin, naevi, primary and metastatic melanoma. Int J Cancer 41: 336–343

    CAS  Google Scholar 

  • Jayadev S, Linardic CM, Hannun YA (1994) Identification of arachidonic acid as a mediator of sphingomyelin hydrolysis in response to tumor necrosis factor. J Biol Chem 269: 5757–5763

    PubMed  CAS  Google Scholar 

  • Jayadev S, Liu B, Bielawska AE, Lee JY, Nazaire F, Pushkareva MY, Obeid LM, Hannun YA (1995) Role for ceramide in cell cycle arrest. J Biol Chem 270: 2047–2052

    Article  PubMed  CAS  Google Scholar 

  • Kolesnick R, Fuks Z (1995) Ceramide: a signal for apoptosis or mitogenesis? J Exp Med 181: 1949–1952

    Article  PubMed  CAS  Google Scholar 

  • Kolesnick RN (1987) 1,2-Diacylglycerols but not phorbol ester stimulate sphingomyelin hydrolysis in GH3 pituitary cells. J Biol Chem 262: 16759–16762

    Google Scholar 

  • Krammer PH, Behrmann I, Daniel P, Dhein J, Debatin KM (1994) Regulation of apoptosis in the immune system. Curr Opin Immunol 6: 279–289

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Zamzami N, Susin SA (1997) Mitochondrial control of apoptosis. Immunol Today 18: 44–51

    Article  PubMed  CAS  Google Scholar 

  • Kumar S (1995) ICE-like proteases in apoptosis. Trends Biochem Sci 20: 198–202

    Article  PubMed  CAS  Google Scholar 

  • Linardic CM, Hannun YA (1994) Identification of a distinct pool of sphingomyelin in the sphingomyelin cycle. J Biol Chem 269: 23530–23537

    PubMed  CAS  Google Scholar 

  • Liu P, Anderson RGW (1995) Compartmentalized production of ceramide at the cell surface. J Biol Chem 270: 27179–27185

    Article  PubMed  CAS  Google Scholar 

  • Los M, Van de Craen Penning LC, Schenk H, Westendorp M, Bauerle PA, Dröge W, Krammer PH, Fiers W, Schulze-Osthoff K (1995) Requirement of an ICE/CED-3 protease for Fas/APO-1mediated apoptosis. Nature 375: 81–83

    CAS  Google Scholar 

  • Lozano J, Berra E, Municio MM, Diaz-Meco M, Dominguez I, Sanz L, Moscat J (1994) Protein kinase C; isoform is critical for xB-dependent promoter activation by sphingomyelinase. J Biol Chem 269: 19200–19202

    PubMed  CAS  Google Scholar 

  • Muzio M, Chinnaiyan AM, Kischkel FC, O’Rourke K, Shevchenko A, Carsten Scaffidi JN, Bretz JD, Zhang M, Gentz R, Mann M, Krammer PH, Peter ME, Dixit VM (1996) FLICE, a novel FADD homologous ICE/CED-3–like protease, is recruited to the CD95 (Fas/Apo-1) death-inducing signaling complex. Cell 85: 817–827

    Article  PubMed  CAS  Google Scholar 

  • Nagata S, Suda T (1995) Fas and Fas ligand: Ipr and gld mutations. Immunol Today 16: 39–43

    Article  PubMed  CAS  Google Scholar 

  • Nara K, Watanabe Y, Maruyama K, Kasahara K, Nagai Y, Sanai Y (1994) Expression cloning of a CMP-NeuAc: NeuAc a2–3Gal 131–4G1c (31–1’Cer alpha 2,8-sialyltransferase (GD3 synthase) from human melanoma cells. Proc Natl Acad Sci USA 91: 7952–7256

    Article  PubMed  CAS  Google Scholar 

  • Nelson DH, Murray DK, Brady RO (1982) Dexamethasone-induced change in the sphingomyelin content of human polymorphonuclear leukocytes in vitro. J Clin Endocrinol Metab 54: 292–295

    Article  PubMed  CAS  Google Scholar 

  • Nickels JT, Broach JR (1996) A ceramide-activated protein phosphatase mediates ceramideinduced G1 arrest of Saccaromyces cerevisiae. Genes Dev 10: 382–394

    Article  PubMed  CAS  Google Scholar 

  • Okazaki T, Bielawska A, Domae N, Bell R, Hannun YA (1994) Characterization and partial purification of a novel cytosolic, magnesium-independent, neutral sphingomyelinase activated in the early signal transduction of la,25-dihydroxyvitamin D3-induced HL-60 differentiation. J Biol Chem 269: 4070–4077

    PubMed  CAS  Google Scholar 

  • Pastorino JG, Simbula G, Yamamoto K, Glascott PA, Rothman R, Farber JL (1996) The cytotoxicity of tumor necrosis factor depends on induction of the mitochondrial permeability transition. J Biol Chem 271: 29792–29798

    Article  PubMed  CAS  Google Scholar 

  • Pushkarava M, Obeid LM, Hannun YA (1995) Ceramide: an endogenous regulator of apoptosis and growth suppression. Immunol Today 16: 294–297

    Article  Google Scholar 

  • Rosenwald AG, Pagano RE (1993) Intracellular transport of ceramide and its metabolites at the Golgi complex: insights from short-chain analogs. Adv Lipid Res 26: 101–118

    PubMed  CAS  Google Scholar 

  • Sallusto F, Nicolo’ C, De Maria R, Corinti S, Testi R (1996) Ceramide inhibits antigen uptake and presentation by dendritic cells. J Exp Med 184: 2411–2416

    Article  PubMed  CAS  Google Scholar 

  • Sandhoff K, Kolter T (1996) Topology of glycosphingolipid degradation. Trends Cell Biol 6: 98–103

    Article  PubMed  CAS  Google Scholar 

  • Sandhoff K, van Echten G (1994) Ganglioside metabolism: enzymology, topology and regulation. Prog Brain Res 101: 17–29

    Article  PubMed  CAS  Google Scholar 

  • Santana P, Pena L, Haimovitz-Friedman A, Martin S, Green D, McLaughlin M, Cordon-Cardo C, Schuchman EH, Fuks Z, Kolesnick R (1996) Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86: 189–199

    Article  PubMed  CAS  Google Scholar 

  • Sariola H, Aufderheide E, Bernhard H, Henke-Fahle S, Dippold W, Ekblom P (1988) Antibodies to cell surface ganglioside GD3 perturb inductive epithelial-mesenchymal interactions. Cell 54: 235–245

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Kurata K, Kojima N, Kurosawa N, Ohta S, Hanai N, Tsuji S, Nishi T (1994) Expression cloning of a GM3-sepcific a-2,8-sialyltransferase (GD3 synthase). J Biol Chem 269: 15950–15956

    PubMed  CAS  Google Scholar 

  • Schuchman EH, Suchi M, Takahashi T, Sandhoff K, Desnick R (1991) Human acidic sphingomyelinase. Isolation, nucleotide sequence and expression of the full length and alternatively spliced cDNA. J Biol Chem 266: 8531–8539

    PubMed  CAS  Google Scholar 

  • Schütze S, Potthof K, Machleidt T, Berkovic D, Wiegmann K, Krönke M (1992) TNF activates NFxB by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell 71: 765–776

    Article  PubMed  Google Scholar 

  • Spence MW (1993) Sphingomyelinases. Adv Lipid Res 26: 3–23

    PubMed  CAS  Google Scholar 

  • Strasberg P (1986) Cerebrosides and psychosine disrupt mitochondrial functions. Biochem Cell Biol 64: 485–489

    Article  PubMed  CAS  Google Scholar 

  • Testi R (1996) Sphingomyelin Breakdown and cell fate. Trends Biochem Sci 21: 468–471

    Article  PubMed  CAS  Google Scholar 

  • Tettamanti G, Riboni L (1994) Ganglioside turnover and neural cell function: a new perspective. Prog Brain Res 101: 77–100

    Article  PubMed  CAS  Google Scholar 

  • van Echten G, Sandhoff K (1993) Ganglioside metabolism. Enzymology, topology and regulation. J Biol Chem 268: 5341–5344

    PubMed  Google Scholar 

  • van Meer G (1993) Transport and sorting of membrane lipids. Curr Opin Cell Biol 5: 661–673

    Article  PubMed  Google Scholar 

  • Verheij M, Bose R, Lin XH, Yao B, Jarvis WD, Grant S, Birrer MJ, Szabo E, Zon LI, Kyriakis JM, Haimovitz-Friedman A, Fuks Z, Kolesnick RN (1996) Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 380: 75–79

    Article  PubMed  CAS  Google Scholar 

  • Wiegmann K, Schütze S, Machleidt T, Witte D, Krönke M (1994) Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell 78: 1005–1015

    Article  PubMed  CAS  Google Scholar 

  • Yao B, Zhang Y, Delikat S, Mathias S, Basu S, Kolesnick R (1995) Phosphorylation of Raf by ceramide-activated protein kinase. Nature 378: 307–310

    Article  PubMed  CAS  Google Scholar 

  • Yu RK, Macala LJ, Taki T, Weinfield HM, Yu FS (1988) Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J Neurochem 50: 1825–1829

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Malisan, F., Rippo, M.R., De Maria, R., Testi, R. (1999). Lipid and Glycolipid Mediators in CD95-Induced Apoptotic Signaling. In: Kumar, S. (eds) Apoptosis: Biology and Mechanisms. Results and Problems in Cell Differentiation, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69184-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69184-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21623-1

  • Online ISBN: 978-3-540-69184-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics