Skip to main content

Abstract

The project encompasses matrix method developments, tailored parallelization as well as cutting-edge applications exploiting the power of the hlrb-ii cluster: fast matrix exponential algorithms using Chebyshev series are devised in view of calculating quantum dynamics of large systems. They outperform the standard Padé-approximation by a speed-up of approximately 30% in cpu time while obtaining even better accuracy. The routines are incorporated into a fully parallelized package of gradient-flow algorithms for optimal quantum control.

As an application, here we present a quantum cisc compiler: it breaks large target unitary gates into modules of effective m-qubit (i.e. two-level system) interactions. We extend the standard restricted set of modules with m=1,2 (risc) to a scalable toolbox of multi-qubit optimal controls with m≤10 forming modules of complex instruction sets (cisc). Typically, the instruction code (‘experimental controls’) by our quantum cisc compiler is some three to ten times faster than by risc compilation thus dramatically saving the essential quantum coherences from unnecessary relaxative decay with time. This advantage of our method over standard universal gates is demonstrated for the indirect swap gate, the quantum Fourier transform as well as for multiply-controlled not gates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Dowling, G. Milburn, Philos. Trans. R. Soc. Lond. A 361, 1655 (2003)

    Article  MathSciNet  Google Scholar 

  2. T. Gradl, A.K. Spörl, T. Huckle, S.J. Glaser, T. Schulte-Herbrüggen, in Proceedings of the EURO-PAR 2006. Lecture Notes in Computer Science, vol. 4128 (Springer, Berlin, 2006), p. 751

    Chapter  Google Scholar 

  3. T. Schulte-Herbrüggen, A.K. Spörl, N. Khaneja, S.J. Glaser, Phys. Rev. A 72, 042331 (2005)

    Article  Google Scholar 

  4. N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, S.J. Glaser, J. Magn. Reson. 172, 296 (2005)

    Article  Google Scholar 

  5. C. Moler, C. van Loan, SIAM Rev. 20, 801 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  6. C. Moler, C. van Loan, SIAM Rev. 45, 3 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. T.J. Rivlin, The Chebyshev Polynomials (Wiley-Interscience, New York, 1974)

    MATH  Google Scholar 

  8. M. Veshtort, R.G. Griffin, J. Magn. Reson. 178, 248 (2006)

    Article  Google Scholar 

  9. M.S. Paterson, L.J. Stockmeyer, SIAM J. Comput. 2, 60 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  10. R.E. Ladner, M.J. Fischer, J. ACM 27, 831 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  11. R.P. Feynman, Int. J. Theor. Phys. 21, 467 (1982)

    Article  MathSciNet  Google Scholar 

  12. R.P. Feynman, Feynman Lectures on Computation (Perseus Books, Reading, 1996)

    Google Scholar 

  13. P.W. Shor, in Proceedings of the Symposium on the Foundations of Computer Science, Los Alamitos, CA, 1994 (IEEE Computer Society Press, New York, 1994), pp. 124–134

    Google Scholar 

  14. P.W. Shor, SIAM J. Comput. 26, 1484 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. C.H. Papadimitriou, Computational Complexity (Addison Wesley, Reading, 1995)

    Google Scholar 

  16. R. Jozsa, Proc. R. Soc. A 454, 323 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. R. Cleve, A. Ekert, C. Macchiavello, M. Mosca, Proc. R. Soc. A 454, 339 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Ettinger, P. Høyer, E. Knill, Inf. Process. Lett. 91, 43 (2004)

    Article  MATH  Google Scholar 

  19. J.W. Cooley, J.W. Tukey, Math. Comput. 19, 297 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  20. T. Beth, Verfahren der schnellen Fourier-Transformation (Teubner, Stuttgart, 1984)

    MATH  Google Scholar 

  21. S. Lloyd, Science 273, 1073 (1996)

    Article  MathSciNet  Google Scholar 

  22. D. Abrams, S. Lloyd, Phys. Rev. Lett. 79, 2586 (1997)

    Article  Google Scholar 

  23. C. Zalka, Proc. R. Soc. Lond. A 454, 313 (1998)

    MATH  Google Scholar 

  24. C. Bennett, I. Cirac, M. Leifer, D. Leung, N. Linden, S. Popescu, G. Vidal, Phys. Rev. A 66, 012305 (2002)

    Article  MathSciNet  Google Scholar 

  25. L. Masanes, G. Vidal, J. Latorre, Quant. Inf. Comput. 2, 285 (2002)

    MATH  MathSciNet  Google Scholar 

  26. E. Jané, G. Vidal, W. Dür, P. Zoller, J. Cirac, Quant. Inf. Comput. 3, 15 (2003)

    MATH  Google Scholar 

  27. D. Deutsch, Proc. R. Soc. Lond. A 400, 97 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  28. J. Dodd, M. Nielsen, M. Bremner, R. Thew, Phys. Rev. A 65, 040301 (2002)

    Article  MathSciNet  Google Scholar 

  29. M. Bremner, D. Bacon, M. Nielsen, Phys. Rev. A 71, 052312 (2005)

    Article  Google Scholar 

  30. G. Vidal, K. Hammerer, J.I. Cirac, Phys. Rev. Lett. 88, 237902 (2002)

    Article  Google Scholar 

  31. A.M. Childs, H.L. Haselgrove, M.A. Nielsen, Phys. Rev. A 68, 052311 (2003)

    Article  Google Scholar 

  32. R. Zeier, M. Grassl, T. Beth, Phys. Rev. A 70, 032319 (2004)

    Article  Google Scholar 

  33. P. Wocjan, D. Janzing, T. Beth, Quant. Inf. Comput. 2, 117 (2002)

    MATH  MathSciNet  Google Scholar 

  34. V. Ramakrishna, H. Rabitz, Phys. Rev. A 54, 1715 (1995)

    Article  MathSciNet  Google Scholar 

  35. T. Schulte-Herbrüggen, Aspects and prospects of high-resolution NMR. PhD thesis, Diss-ETH 12752, Zürich, 1998

    Google Scholar 

  36. S.J. Glaser, T. Schulte-Herbrüggen, M. Sieveking, O. Schedletzky, N.C. Nielsen, O.W. Sørensen, C. Griesinger, Science 280, 421 (1998)

    Article  Google Scholar 

  37. U. Helmke, K. Hüper, J.B. Moore, T. Schulte-Herbrüggen, J. Global Optim. 23, 283 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  38. R.R. Tucci, e-print: http://arxiv.org/pdf/quant-ph/9902062 (1999)

  39. D. Williams, Quantum computer architecture, assembly language and compilation. Master’s thesis, University of Warwick, 2004

    Google Scholar 

  40. V.V. Shende, S. Bullock, I.L. Markov, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25, 1000 (2006)

    Article  Google Scholar 

  41. K.M. Svore, A.V. Aho, A.W. Cross, I. Chuang, I.L. Markov, Computer 25, 74 (2006)

    Article  Google Scholar 

  42. R.R. Tucci, e-print: http://arxiv.org/pdf/0706.0479 (2007)

  43. T. Schulte-Herbrüggen, A. Spörl, N. Khaneja, S.J. Glaser, e-print: http://arxiv.org/pdf/quant-ph/0609037 (2006)

  44. T. Schulte-Herbrüggen, A. Spörl, S.J. Glaser, e-print: http://arxiv.org/pdf/0712.3227 (2007)

  45. G.D. Sanders, K.W. Kim, W.C. Holton, Phys. Rev. A 59, 1098 (1999)

    Article  Google Scholar 

  46. A.K. Spörl, T. Schulte-Herbrüggen, S.J. Glaser, V. Bergholm, M.J. Storcz, J. Ferber, F.K. Wilhelm, Phys. Rev. A 75, 012302 (2007)

    Article  Google Scholar 

  47. N. Khaneja, S.J. Glaser, Chem. Phys. 267, 11 (2001)

    Article  Google Scholar 

  48. N. Khaneja, R. Brockett, S.J. Glaser, Phys. Rev. A 63, 032308 (2001)

    Article  Google Scholar 

  49. N. Khaneja, S.J. Glaser, R. Brockett, Phys. Rev. A 65, 032301 (2002)

    Article  MathSciNet  Google Scholar 

  50. A. Saito, K. Kioi, Y. Akagi, N. Hashizume, K. Ohta, http://arxiv.org/pdf/quant-ph/0001113 (2000)

  51. A. Blais, Phys. Rev. A 64, 022312 (2001)

    Article  Google Scholar 

  52. A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P.W. Shor, T. Sleator, J.A. Smolin, H. Weinfurter, Phys. Rev. A 52, 3457 (1995)

    Article  Google Scholar 

  53. R. Zeier, personal communication (2007)

    Google Scholar 

  54. M. Clausen, U. Baum, Fast Fourier Transforms (Bibliographisches Institut, Mannheim, 1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Schulte-Herbrüggen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schulte-Herbrüggen, T., Spörl, A., Waldherr, K., Gradl, T., Glaser, S.J., Huckle, T. (2009). The HLRB Cluster as Quantum CISC Compiler. In: Wagner, S., Steinmetz, M., Bode, A., Brehm, M. (eds) High Performance Computing in Science and Engineering, Garching/Munich 2007. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69182-2_41

Download citation

Publish with us

Policies and ethics