Skip to main content

Parallel Free-Surface and Multi-Phase Simulations in Complex Geometries Using Lattice Boltzmann Methods

  • Conference paper
  • 1495 Accesses

Abstract

This project focuses on the design, development, implementation and optimization of methods, algorithms and software for large scale simulations of free surface and multi-phase flows based on the generalized lattice Boltzmann method (GLBM). Parallel solvers and cache optimized algorithms have been developed to simulate multi-phase and turbulent transient flows in complex three-dimensional geometries. For the simulation of free surface problems where the fluid domain changes with time adaptive methods have been developed. The first subproject is concerned with the simulation of complex turbulent flows around building structures. The second subproject is concerned with the accurate and reliable prediction of transport of contaminants and nutrients in porous media (soils) on different scales (DFG-Project FIMOTUM, First principle based transport in unsaturated media). The third subproject is concerned with the simulation of free surface flows for different engineering applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.M. Adler, F.F. Thovert, Real porous media: Local geometry and macroscopic properties. Appl. Mech. Rev. 51(9), 537–585 (1998)

    Google Scholar 

  2. P.M. Adler, J.-F. Thovert, S. Bekri, F. Yousefian, Real porous media: Local geometry and transports. J. Eng. Mech. 128(8), 829–839 (2002)

    Article  Google Scholar 

  3. B. Ahrenholz, J. Tölke, M. Krafczyk, Lattice-Boltzmann simulations in reconstructed parametrized porous media. Int. J. Comput. Fluid Dyn. 20(6), 369–377 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. B. Ahrenholz, J. Tölke, P. Lehmann, A. Peters, A. Kaestner, M. Krafczyk, W. Durner, Prediction of capillary hysteresis in porous material using lattice Boltzmann methods and comparison to experimental data and a morphological pore network model. Adv. Water Res. (2008 accepted for publication)

    Google Scholar 

  5. S. Bekri, P.M. Adler, Dispersion in multiphase flow through porous media. Int. J. Multiph. Flow 28, 665–697 (2002)

    Article  MATH  Google Scholar 

  6. S. Bekri, J. Howard, J. Muller, P.M. Adler, Electrical resistivity index in multiphase flow through porous media. Transp. Porous Media 51(1), 41–65 (2003)

    Article  Google Scholar 

  7. S. Bekri, O. Vizikab, J.-F. Thovert, P.M. Adler, Binary two-phase flow with phase change in porous media. Int. J. Multiph. Flow 27, 477–526 (2001)

    Article  MATH  Google Scholar 

  8. D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, L.-S. Luo, Multiple-relaxation-time lattice Boltzmann models in three-dimensions. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 360, 437–451 (2002)

    Article  MATH  Google Scholar 

  9. S. Freudiger, J. Hegewald, M. Krafczyk, A parallelization concept for a multi-physics lattice Boltzmann prototype based on hierarchical grids. Prog. Comput. Fluid Dyn. (2007 in press)

    Google Scholar 

  10. U. Frisch, D. d’Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, J.-P. Rivet, Lattice gas hydrodynamics in two and three dimensions. Complex Syst., 75–136 (1987)

    Google Scholar 

  11. S. Geller, M. Krafczyk, J. Tölke, S. Turek, J. Hron, Benchmark computations based on lattice-Boltzmann, finite element and finite volume methods for laminar flows. Comput. Fluids 35, 888–897 (2006)

    Article  Google Scholar 

  12. I. Ginzburg, D. d’Humières, Multireflection boundary conditions for lattice Boltzmann models. Phys. Rev. E 68, 066614 (2003)

    MathSciNet  Google Scholar 

  13. I. Ginzburg, K. Steiner, Lattice Boltzmann model for free-surface flow and its application to filling process in casting. J. Comput. Phys. 185, 61–99 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. I. Ginzburg, F. Verhaeghe, D. d’Humières, Two-relaxation-time lattice Boltzmann scheme: About parametrization, velocity, pressure and mixed boundary conditions. Commun. Comput. Phys. 3, 427–478 (2008)

    MathSciNet  Google Scholar 

  15. D. Grunau, S. Chen, K. Eggert, A lattice Boltzmann model for multiphase fluid flows. Phys. Fluids 5(10), 2557–2562 (1993)

    Article  MATH  Google Scholar 

  16. A.K. Gunstensen, D. Rothman, Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 43(8), 4320–4327 (1991)

    Article  Google Scholar 

  17. W. Haines, Studies in the physical properties of soils, V: The hysteresis effect in capillary properties, and the modes of moisture distribution associated therewith. J. Agric. Sci. 20, 97–116 (1930)

    Article  Google Scholar 

  18. S. Hou, J. Sterling, S. Chen, G.D. Doolen, A lattice Boltzmann subgrid model for high Reynolds number flows. Fields Inst. Commun. 6, 151–166 (1996)

    MathSciNet  Google Scholar 

  19. M. Junk, A. Klar, L.-S. Luo, Asymptotic analysis of the lattice Boltzmann equation. Phys. Rev. 210(2), 676–704 (2005)

    MATH  MathSciNet  Google Scholar 

  20. C. Körner, M. Thies, T. Hofmann, N. Thürey, U. Rüde, Lattice Boltzmann model for free surface flow for modeling foaming. J. Stat. Phys. 121(1–2), 179–196 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Krafczyk, Gitter-Boltzmann Methoden: Von der Theorie zur Anwendung. Professorial thesis, Lehrstuhl Bauinformatik, TU München, 2001

    Google Scholar 

  22. M. Krafczyk, J. Tölke, L.-S. Luo, Large-eddy simulations with a multiple-relaxation-time LBE model. Int. J. Mod. Phys. B 17(1–2), 33–39 (2003)

    Article  Google Scholar 

  23. P. Lallemand, L.-S. Luo, Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61(6), 6546–6562 (2000)

    MathSciNet  Google Scholar 

  24. P. Lehmann, M. Berchtold, B. Ahrenholz, J. Tölke, A. Kaestner, M. Krafczyk, H. Flühler, H.R. Künsch, Impact of geometrical properties on permeability and fluid phase distribution in porous media. Adv. Water Res. (2008 accepted for publication)

    Google Scholar 

  25. P. Lehmann, M. Krafczyk, A. Gygi, A. Flisch, P. Wyss, H. Flühler, Modelling flow of water and air in reconstructed structures of porous media, in Proceedings of the 2nd World Congress on Industrial Tomography, Hannover (2001), pp. 628–635

    Google Scholar 

  26. P. Lehmann, F. Stauffer, C. Hinz, O. Dury, H. Flühler, Effect of hysteresis on water flow in sand column with a fluctuating capillary fringe. J. Contam. Hydrol. 33, 81–100 (1998)

    Article  Google Scholar 

  27. P. Lehmann, P. Wyss, A. Flisch, E. Lehmann, P. Vontobel, M. Krafczyk, A. Kaestner, F. Beckmann, A. Gygi, H. Flühler, Tomographical imaging and mathematical description of porous media used for the prediction of fluid distribution. Vadose Zone J. 5, 80–97 (2006)

    Article  Google Scholar 

  28. N. Martys, H. Chen, Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys. Rev. E 53, 743–750 (1996)

    Google Scholar 

  29. W.A. Moseley, V.K. Dhir, Capillary pressure-saturation relationship in porous media including the effect of wettability. J. Hydrol. 178, 33–53 (1996)

    Article  Google Scholar 

  30. MPI-Forum. Message passing interface. http://www.mpi-forum.org (2006)

  31. C. Pan, M. Hilpert, C.T. Miller, Lattice-Boltzmann simulation of two-phase flow in porous media. Water Res. Res. 40 (2004)

    Google Scholar 

  32. M. Pervaiz, M. Teixeira, Two equation turbulence modelling with the lattice Boltzmann method, in Proc. of 2nd International Symposium on Computational Technologies for Fluid Thermal Chemical Systems with Industrial Applications, ASME PVP Division Conference, Boston, 1999

    Google Scholar 

  33. Y.H. Qian, D. d’Humières, P. Lallemand, Lattice BGK models for Navier-Stokes equation. Europhys. Lett. 17, 479–484 (1992)

    Article  MATH  Google Scholar 

  34. D.H. Rothmann, J.M. Keller, Immiscible cellular automaton fluids. J. Stat. Phys. 52, 1119–1127 (1988)

    Article  Google Scholar 

  35. D. Russo, W.A. Jury, G.L. Butters, Numerical analysis of solute transport during transient irrigation, 1: The effect of hysteresis and profile heterogeneity. Water Resour. Res. 25, 2109–2118 (1989)

    Article  Google Scholar 

  36. X. Shan, H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47, 1815–1819 (1993)

    Article  Google Scholar 

  37. M.R. Swift, W.R. Osborn, J.M. Yeomans, Lattice Boltzmann simulation of nonideal fluids. Phys. Rev. Lett. 75(5), 830–833 (1995)

    Article  Google Scholar 

  38. M. Teixeira, Incorporating turbulence models into the lattice-Boltzmann method. Int. J. Mod. Phys. C 9(8), 1159–1175 (1998)

    Article  Google Scholar 

  39. J. Tölke, S. Freudiger, M. Krafczyk, An adaptive scheme for LBE multiphase flow simulations on hierarchical grids. Comput. Fluids 35, 820–830 (2006)

    Article  Google Scholar 

  40. J. Tölke, M. Krafczyk, M. Schulz, E. Rank, Lattice Boltzmann simulations of binary fluid flow through porous media. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 360(1792), 535–545 (2002)

    Article  MATH  Google Scholar 

  41. H.-J. Vogel, J. Tölke, V.P. Schulz, M. Krafczyk, K. Roth, Comparison of a lattice-Boltzmann model, a full-morphology model, and a pore network model for determining capillary pressure-saturation relationships. Vadose Zone J. 4(2), 380–388 (2005)

    Article  Google Scholar 

  42. G. Wellein, T. Zeiser T, G. Hager, S. Donath, On the single processor performance of simple lattice Boltzmann kernels. Comput. Fluids 35(8–9), 910–919 (2006)

    Article  Google Scholar 

  43. Z.L. Yang, T.N. Dinh, R.R. Nourgaliev, B.R. Sehgal, Evaluation of the Darcy’s law performance for two-fluid flow hydrodynamics in a particle debris bed using a lattice-Boltzmann model. Heat Mass Transf. 36, 295–304 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Tölke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tölke, J., Ahrenholz, B., Hegewald, J., Krafczyk, M. (2009). Parallel Free-Surface and Multi-Phase Simulations in Complex Geometries Using Lattice Boltzmann Methods. In: Wagner, S., Steinmetz, M., Bode, A., Brehm, M. (eds) High Performance Computing in Science and Engineering, Garching/Munich 2007. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69182-2_32

Download citation

Publish with us

Policies and ethics