Skip to main content

Large-Eddy Simulation of Plane Jet Injection into Supersonic Turbulent Crossflow

  • Conference paper
Book cover High Performance Computing in Science and Engineering, Garching/Munich 2007

Abstract

Various aspects of airbreathing propulsion systems for use in future space transportation systems, based on scramjet concepts involving combustion of fuel in a supersonic air flow, have been under investigation in the past. In most combustion chamber designs, gaseous fuel is injected at an angle into the air flow, from ports in the duct wall or in some kind of strut or pylon extending into the duct. Although the mixing characteristics of the underlying, more general jet-in-crossflow configuration together with the penetration depth of the jets have great impact on proper combustion of the fuel and correct operation of such a propulsion device, most time-accurate numerical investigations on the transversely injected jet have been carried out for incompressible flow. Numerical work on the supersonic injection flow field is mostly limited to solution of the Reynolds-averaged Navier-Stokes equations. There is thus a need for numerical investigation of the supersonic jet-in-crossflow situation using accurate numerical methods and resolving details of the temporal evolution of the flow. The aim of the present project is to perform large-eddy simulations of the injection of a plane jet into a supersonic flow, using discretization methods of high order of accuracy in both space and time. A mixture of H2 and N2 is injected transversely from a spanwise slot into an air flow in a channel, where reaction with oxygen and heat release take place. The computations are expected to provide detailed information on the physics of this flow, which includes regions of separation, shock-turbulence interaction and turbulence-combustion interaction. Preliminary results together with a description of the computational setup will be presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. www.netlib.org

  2. Handbook of Supersonic Aerodynamics. NAVORD Report 1488, vol. 1, Bureau of Ordnance Publication (1949)

    Google Scholar 

  3. J.D. Anderson, Hypersonic and High-Temperature Gas Dynamics (McGraw-Hill, New York, 1989)

    Google Scholar 

  4. M.J. Barber, J.A. Schetz, L.A. Roe, Normal, sonic helium injection through a wedge-shaped orifice into supersonic flow. J. Propuls. Power 13(2), 257–263 (1997)

    Article  Google Scholar 

  5. R. Brent, Algorithms for Minimization without Derivatives (Prentice-Hall, New York, 1973)

    MATH  Google Scholar 

  6. C.F. Chenault, P.S. Beran, R.D.W. Bowersox, Numerical investigation of supersonic injection using a Reynolds-stress turbulence model. AIAA J. 37(10), 1257–1269 (1999)

    Article  Google Scholar 

  7. G. Coleman, J. Kim, J. Moser, A numerical study of turbulent supersonic isothermal wall channel flow. J. Fluid Mech. 305, 159–183 (1995)

    Article  MATH  Google Scholar 

  8. J.A. Denev, J. Fröhlich, H. Bockhorn, Direct numerical simulation of a transitional jet in crossflow with mixing and chemical reactions, in Fifth International Symposium on Turbulence and Shear Flow Phenomena, Garching, Germany (2007), pp. 1243–1248

    Google Scholar 

  9. A. Ern, V. Giovangigli, Fast and accurate multicomponent transport property evaluation. J. Comput. Phys. 120, 105–116 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. H. Foysi, Transport passiver Skalare in wandgebundener und isotroper kompressibler Turbulenz. PhD thesis, Technische Universität München, 2005

    Google Scholar 

  11. R. Friedrich, Compressible turbulent flows: Aspects of prediction and analysis. Z. Angew. Math. Mech. 87, 189–211 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Ghosh, Direct and large-eddy simulation of supersonic turbulent flow in pipes, nozzles and diffusers. PhD thesis, Technische Universität München, 2007, to appear

    Google Scholar 

  13. W.P. Jones, M. Wille, Large-eddy simulation of a plane jet in a crossflow. Int. J. Heat Fluid Flow 17(3), 296–306 (1996)

    Article  Google Scholar 

  14. C.A. Kennedy, M. Carpenter, R. Lewis, Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations. Tech. Rep. 99-22, ICASE (1999)

    Google Scholar 

  15. E. von Lavante, D. Zeitz, M. Kallenberg, Numerical simulation of supersonic airflow with transverse hydrogene injection. J. Propuls. Power 17(6), 1319–1326 (2001)

    Article  Google Scholar 

  16. R. Lechner, J. Sesterhenn, R. Friedrich, Turbulent supersonic channel flow. J. Turbul. 2, 001 (2001)

    Article  MathSciNet  Google Scholar 

  17. S.K. Lele, Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. C.C.M. Lui, A numerical investigation of shock associated noise. PhD thesis, Department of Mechanical Engineering, Stanford University, 2003

    Google Scholar 

  19. I. Mahle, Direct and large-eddy simulation of inert and reacting compressible turbulent shear layers. PhD thesis, Technische Universität München, 2007

    Google Scholar 

  20. I. Mahle, H. Foysi, S. Sarkar, R. Friedrich, On the turbulence structure in inert and reacting compressible mixing layers. J. Fluid Mech. (2007, to appear)

    Google Scholar 

  21. R.J. Margason, Fifty years of jet in crossflow research, in AGARD Conference Proceedings (1993), pp. 1.1–1.41

    Google Scholar 

  22. P. Markatou, L.D. Pfefferle, M.D. Smooke, A computational study of methane-air combustion over heated catalytic and non-catalytic surfaces. Combust. Flame 93, 185–201 (1993)

    Article  Google Scholar 

  23. J. Mathew, R. Lechner, H. Foysi, J. Sesterhenn, R. Friedrich, An explicit filtering method for LES of compressible flows. Phys. Fluids 15(8), 2279–2289 (2003)

    Article  Google Scholar 

  24. S. Muppidi, K. Mahesh, Study of trajectories of jets in crossflow using direct numerical simulations. J. Fluid Mech. 530, 81–100 (2005)

    Article  MATH  Google Scholar 

  25. J. Nordström, The use of characteristic boundary conditions for the Navier-Stokes equations. Comput. Fluids 24(5), 609–623 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  26. T. Poinsot, S. Lele, Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  27. T. Poinsot, D. Veynante, Theoretical and Numerical Combustion, 2nd edn. (Edwards, Ann Arbor, 2005)

    Google Scholar 

  28. H.E.G. Powrie, G.J. Ball, R.A. East, Comparison of the interactions of two and three dimensional transverse jets with a hypersonic free stream. in AGARD Conference Proceedings (1993), pp. 20.1–20.8

    Google Scholar 

  29. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd edn. (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  30. J.G. Santiago, J.C. Dutton, Velocity measurements of a jet injected into a supersonic crossflow. J. Propuls. Power 13(2), 264–273 (1997)

    Article  Google Scholar 

  31. J.M. Seiner, S.M. Dash, D.C. Kenzakowski, Historical survey on enhanced mixing in scramjet engines. J. Propuls. Power 17(6), 1273–1286 (2001)

    Article  Google Scholar 

  32. J. Sesterhenn, A characteristic-type formulation of the Navier-Stokes equations for high order upwind schemes. Comput. Fluids 30(1), 37–67 (2001)

    Article  MATH  Google Scholar 

  33. F.W. Spaid, E.E. Zukoski, A study of the interaction of gaseous jets from transverse slots with supersonic external flows. AIAA J. 6(2), 205–212 (1968)

    Article  Google Scholar 

  34. A.T. Sriram, Numerical simulations of transverse injection of plane and circular sonic jets into turbulent supersonic crossflows. PhD thesis, Department of Aerospace Engineering, Indian Institute of Science, Bangalore, 2003

    Google Scholar 

  35. S. Stolz, N.A. Adams, An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 11(7), 1699–1701 (1999)

    Article  Google Scholar 

  36. B. Wegner, Y. Huai, A. Sadiki, Comparative study of turbulent mixing in jet in cross-flow configurations using LES. Int. J. Heat Fluid Flow 25, 767–775 (2004)

    Article  Google Scholar 

  37. L.L. Yuan, R.L. Street, J.H. Ferziger, Large-eddy simulations of a round jet in crossflow. J. Fluid Mech. 379, 71–104 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Schaupp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schaupp, C., Friedrich, R. (2009). Large-Eddy Simulation of Plane Jet Injection into Supersonic Turbulent Crossflow. In: Wagner, S., Steinmetz, M., Bode, A., Brehm, M. (eds) High Performance Computing in Science and Engineering, Garching/Munich 2007. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69182-2_28

Download citation

Publish with us

Policies and ethics