Skip to main content

Abstract

In this paper a numerical solution method for the compressible Navier-Stokes (NS) as well as the Reynolds-averaged NS equations, based on the Discontinuous Galerkin (DG) space discretization, is presented. In order to close the Reynolds-averaged Navier-Stokes (RANS) system we use the Spalart-Allmaras or the Wilcox k-ω turbulence model. The paper includes some details of the code implementation. The excellent parallelization characteristics of the scheme are demonstrated, achieved by hiding communication latency behind computation, and some results are shown, like flows past a sphere and a classical airfoil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Bassi, S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. F. Bassi, S. Rebay, High-order accurate discontinuous finite element solution of the 2D Euler equations. J. Comput. Phys. 138, 251–285 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. F. Bassi, S. Rebay, A high order discontinuous Galerkin method for compressible turbulent flows, in Discontinuous Galerkin Methods, ed. by B. Cockburn, G.E. Karniadakis, C.-W. Shu (Springer, Berlin, 2000), pp. 77–88

    Google Scholar 

  4. B. Cockburn, C.W. Shu, The local discontinuous Galerkin finite element method for convection-diffusion systems. SIAM J. Numer. Anal. 35, 337–361 (1998)

    MathSciNet  Google Scholar 

  5. B. Cockburn, C.W. Shu, The Runge-Kutta discontinuous Galerkin finite element method for conservation laws, V: Multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. E. Donley, The drag force on a sphere. UMAP J. 12(1), 47–80 (1991)

    Google Scholar 

  7. W. Haase, E. Chaput, E. Elsholz, M. Leschziner, U. Müller, ECARP—European Computational Aerodynamics Research Project: Validation of CFD Codes and Assessment of Turbulence Models. Notes on Numerical Fluid Mechanics, vol. 58 (Viehweg, Wiesbaden, 1997)

    Google Scholar 

  8. G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Numer. Anal. 20, 359—392 (1998)

    MathSciNet  Google Scholar 

  9. M. Keßler, Discontinuous Galerkin methods toward application, in 15th International Symposium of the German Working Flow on Fluid Mechanics, 2006

    Google Scholar 

  10. M. Keßler, Engineering application oriented discontinuous Galerkin methods, in 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, AIAA-Paper 2007-0511 (2007)

    Google Scholar 

  11. B. Landmann, M. Keßler, S. Wagner, E. Krämer, A parallel discontinuous Galerkin code for laminar and turbulent flows. Comput. Fluids 37, 427–438 (2008). Presented at the Euromech Colloquium 467 on Turbulent Flows and Noise Generation, Marseille, 18–20 July 2005

    Article  Google Scholar 

  12. B. Landmann, M. Keßler, S. Wagner, E. Krämer, A parallel discon tinuous Galerkin code for the Navier-Stokes equations, in High Order Non-Oscillatory Methods for Wave Propagation, Trento, Italy, 2005

    Google Scholar 

  13. B. Landmann, M. Keßler, S. Wagner, E. Krämer, A parallel discontinuous Galerkin code for the Navier-Stokes equations, in 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, AIAA-Paper 2006-111 (2006)

    Google Scholar 

  14. P.D. Lax, A. Harten, B. van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. (1983)

    Google Scholar 

  15. C. Lübon, S. Wagner, in Spatial Discretization of High Order and Curved Elements for Unstructured Three-Dimensional Discontinuous Galerkin Codes. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 96 (Springer, Berlin, 2007), pp. 145–153

    Google Scholar 

  16. C. Lübon, M. Keßler, S. Wagner, E. Krämer, High-order boundary discretization for discontinuous Galerkin codes, in 25nd AIAA Applied Aerodynamics Conference, San Francisco, AIAA-Paper 2006-2822 (2006)

    Google Scholar 

  17. V.C. Patel, T.A. Johnson, Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378, 19–70 (1999)

    Article  Google Scholar 

  18. A.G. Tomboulides, Direct and large-eddy simulation of wake flows: Flow past a sphere. PhD thesis, Princeton University, 1993

    Google Scholar 

  19. S.J. Sherwin, G.E. Karniadakis, Spectral/hp element methods for computational fluid dynamics (2004)

    Google Scholar 

  20. J.J.W. van der Vegt, H. van der Ven, Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows, I: General formulation. J. Comput. Phys. 217, 589–611 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Lübon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lübon, C., Keßler, M., Wagner, S. (2009). A Parallel CFD Solver Using the Discontinuous Galerkin Approach. In: Wagner, S., Steinmetz, M., Bode, A., Brehm, M. (eds) High Performance Computing in Science and Engineering, Garching/Munich 2007. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69182-2_23

Download citation

Publish with us

Policies and ethics