Skip to main content

Abstract

Ab initio and density-functional theory (DFT) calculations on the Cu(II)-catalyzed rearrangement of quadricyclane to norbornadiene suggest that reaction proceeds via electron-transfer from the surface/CuSO4 to the hydrocarbon.

The mechanisms of direct porphyrin metalation was investigated using density functional theory (DFT) calculations for the gas-phase reactions of the unsubstituted porphyrin with the metals Fe, Co, Ni, Cu and Zn. The related reaction of tetraphenylporphyrin with bare metal atoms (Co and Zn) was studied with X-ray photoelectron spectroscopy, scanning tunneling microscopy, and temperature-programmed reaction measurements on ordered monolayer films of the molecules adsorbed on a Ag(111) surface. DFT calculations suggest that metalations with Fe, Co and Ni show two-state reactivity, while those with Cu and Zn proceed on a single potential energy surface. For metalation with Zn, we calculated a barrier of the first hydrogen transfer step of 32.6 kcal mol−1, in a good agreement with the overall experimental activation energy of 31 kcal mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Kresse, J. Hafner, Phys. Rev. B 47, 558–561 (1993)

    Article  Google Scholar 

  2. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251–14269 (1994)

    Article  Google Scholar 

  3. G. Kresse, J. Hafner, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  4. G. Wilder, M. Giester, Min. Petrol. 39, 201 (1998)

    Article  Google Scholar 

  5. S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200–1211 (1980)

    Article  Google Scholar 

  6. J.P. Perdew, J. A Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671–6687 (1992)

    Article  Google Scholar 

  7. P.E. Blöchl, Phys. Rev. B 50, 17953 (1995)

    Article  Google Scholar 

  8. G. Kresse, J. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  Google Scholar 

  9. M.C. Payne, M.P. Teter, D.C. Allen, T.C. Allen, J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045–1097 (1992)

    Article  Google Scholar 

  10. A.D. Becke, in The Challenge of d- and f-electrons: Theory and Computation, ed. by D.R. Salahub, M.C. Zerner (American Chemical Society, Washington, 1989), pp. 165–179

    Google Scholar 

  11. A.D. Becke, J. Chem. Phys. 98, 5648–5652 (1993)

    Article  Google Scholar 

  12. C. Lee, W. Yang, R.G. Parr, Phys. Rev. 37, 785 (1988)

    Article  Google Scholar 

  13. R. Ditchfield, W.J. Hehre, J.A. Pople, L. Radom, Chem. Phys. Lett. 5(1), 13–14 (1970)

    Article  Google Scholar 

  14. W.J. Hehre, R. Ditchfield, J.A. Pople, J. Chem. Phys. 56, 2257 (1972)

    Article  Google Scholar 

  15. P.C. Hariharan, J.A. Pople, Theor. Chim. Acta 28, 213 (1973)

    Article  Google Scholar 

  16. J.-P. Blaudeau, M.P. McGrath, L.A. Curtiss, L. Radom, J. Chem. Phys. 107, 5016 (1997)

    Article  Google Scholar 

  17. M.M. Francl, W.J. Pietro, W.J. Hehre, J.S. Binkley, D.J. DeFrees, J.A. Pople, M.S. Gordon, J. Chem. Phys. 77, 3654 (1982)

    Article  Google Scholar 

  18. M.J. Frisch, J.A. Pople, J.S. Binkley, J. Chem. Phys. 80, 3265 (1984)

    Article  Google Scholar 

  19. V.A. Rassolov, J.A. Pople, M.A. Ratner, T.L. Windus, J. Chem. Phys. 109, 1223 (1998)

    Article  Google Scholar 

  20. V.A. Rassolov, M.A. Ratner, J.A. Pople, P.C. Redfern, L.A. Curtiss, J. Comput. Chem. 22, 976 (2001)

    Article  Google Scholar 

  21. P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 299 (1985)

    Article  Google Scholar 

  22. P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 270 (1985)

    Article  Google Scholar 

  23. W.R. Wadt, P.J. Hay, J. Chem. Phys. 82, 284 (1985)

    Article  Google Scholar 

  24. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, in Gaussian 03, revision d.0.2 (Gaussian, Inc., Wallingford, 2004)

    Google Scholar 

  25. M. Reiher, O. Salomon, B.A. Hess, Theor. Chem. Acc. 107(1), 48–55 (2001)

    Google Scholar 

  26. C. Møller, M.S. Plesset, Phys. Rev. 98, 5648 (1934)

    Google Scholar 

  27. J.A. Pople, M. Head-Gordon, K. Raghavachari, J. Chem. Phys. 87, 5968 (1987)

    Article  Google Scholar 

  28. H. Hogeveen, H.C. Volger, J. Am. Chem. Soc. 89, 2486 (1967)

    Article  Google Scholar 

  29. A. Sen, R.R. Thomas, Organometallics 1, 1251 (1982)

    Article  Google Scholar 

  30. L. Cassar, J. Halpern, Chem. Commun. 17, 1082 (1970)

    Google Scholar 

  31. G.F. Koser, P.R. Pappas, S.-M. Yu, Tet. Lett. 49, 4943 (1973)

    Article  Google Scholar 

  32. B.C. Menon, R.E. Pincock, Can. J. Chem. 47, 3327 (1969)

    Article  Google Scholar 

  33. S. Moss, B.T. King, A. de Meijere, S.I. Kozhushkov, P.-E. Eaton, J. Michl, Org. Lett. 3, 2375 (2001)

    Article  Google Scholar 

  34. R.A. Stearns, P.R. Ortiz de Montellano, J. Am. Chem. Soc. 107, 4081 (1985)

    Article  Google Scholar 

  35. E.S. Kirkor, V.M. Maloney, J. Michl, J. Am. Chem. Soc. 112, 148 (1990)

    Article  Google Scholar 

  36. S.J. Goede, L. de Vries, F. Bickelhaupt, Bull. Soc. Chim. Fr. 130, 185 (1993)

    Google Scholar 

  37. P. Bischof, J. Am. Chem. Soc. 99, 8145 (1977)

    Article  Google Scholar 

  38. J.M. Gottfried, K. Flechtner, A. Kretschmann, T. Lukasczyk, H.-P. Steinrück, J. Am. Chem. Soc. 128, 5644 (2006)

    Article  Google Scholar 

  39. W. Auwärter, A. Weber-Bargioni, S. Brink, A. Riemann, A. Schiffrin, M. Ruben, J.V. Barth, Chem. Phys. Chem. 8, 250–254 (2007)

    Google Scholar 

  40. F. Buchner, V. Schwald, K. Comanici, H.-P. Steinrück, H. Marbach, Chem. Phys. Chem. 8, 241–243 (2007)

    Google Scholar 

  41. Y. Shen, U. Ryde, J. Inorg. Biochem. 98, 878–895 (2004)

    Article  Google Scholar 

  42. Y. Shen, U. Ryde, Chem. A: Eur. J. 11, 1549–1564 (2005)

    Article  Google Scholar 

  43. Y.W. Hsiao, U. Ryde, Inorg. Chim. Acta 359, 1081 (2006)

    Article  Google Scholar 

  44. M.-S. Liao, S. Scheiner, J. Chem. Phys. 117(1), 205–219 (2002)

    Article  Google Scholar 

  45. M.-S. Liao, J.D. Watts, M.-J. Huang, J. Phys. Chem. A 109, 7988–8000 (2005)

    Article  Google Scholar 

  46. M.-S. Liao, J.D. Watts, M.-J. Huang, J. Comp. Chem. 27, 1577–1592 (2006)

    Article  MATH  Google Scholar 

  47. Y.-K. Choe, T. Nakajima, K. Hirao, R. Lindh, J. Chem. Phys. 111(9), 3837–3845 (1999)

    Article  Google Scholar 

  48. P.M. Kozlowski, T.G. Spiro, A. Berces, M.Z. Zgierski, J. Phys. Chem. B 102, 2603–2608 (1998)

    Article  Google Scholar 

  49. C. Rovira, K. Kunc, J. Hutter, M. Parrinello, Inorg. Chem. 40, 11–17 (2001)

    Article  Google Scholar 

  50. D. Schroeder, S. Shaik, H. Schwarz, Acc. Chem. Res. 33, 139 (2000)

    Article  Google Scholar 

  51. S. Shaik, D. Danovich, A. Fiedler, D. Schroeder, H. Schwarz, Helv. Chim. Acta 78(6), 1393–1407 (1995)

    Article  Google Scholar 

  52. E.B. Fleischer, J.H. Wang, J. Am. Chem. Soc. 82, 3498 (1960)

    Article  Google Scholar 

  53. T.E. Shubina, H. Marbach, K. Flechtner, A. Kretschmann, N. Jux, F. Buchner, H.-P. Steinruck, T. Clark, J.M. Gottfried, J. Am. Chem. Soc. 129, 9479–9483 (2007)

    Article  Google Scholar 

  54. L. Hannibal, C.A. Smith, D.W. Jacobsen, N.E. Brasch, Angew. Chem. Int. Ed. 46, 5140–5143 (2007)

    Article  Google Scholar 

  55. C. Selçuki, R. van Eldik, T. Clark, Inorg. Chem. (2004)

    Google Scholar 

  56. F. Roncaroli, T.E. Shubina, T. Clark, R. van Eldik, Inorg. Chem. 45(19), 7869–76 (2006)

    Article  Google Scholar 

  57. C. Rovira, X. Biarnes, K. Kunc, Inorg. Chem. 43, 6628–6632 (2004)

    Article  Google Scholar 

  58. C. Rovira, P.M. Kozlowski, J. Phys. Chem. B 111, 3251–3257 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana E. Shubina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shubina, T.E., Clark, T. (2009). Redox Catalysis and Reactivity of Metalloporphyrines. In: Wagner, S., Steinmetz, M., Bode, A., Brehm, M. (eds) High Performance Computing in Science and Engineering, Garching/Munich 2007. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69182-2_16

Download citation

Publish with us

Policies and ethics