Skip to main content

Numerical Simulations of Compact Binary Systems

  • Conference paper
  • 1421 Accesses

Abstract

We summarize numerical simulations of black hole binaries performed on the HLRB II (SGI Altix 4700) in the time frame 2006–2007. The numerical methods as well as their performance are presented in detail. We summarize modifications of the numerical methods and their impact on accuracy and efficiency of our simulations. We also report on the physical results extracted from these simulations. These concern black-hole physics in general as well as the use of our numerically generated waveforms in the ongoing effort to detect gravitational waves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cactus Computational Toolkit homepage

    Google Scholar 

  2. Carpet Code homepage

    Google Scholar 

  3. http://prlo.aps.org/story/v19/st17

  4. LSC Algorithm Library (LAL)

    Google Scholar 

  5. P. Ajith et al., Phenomenological template family for black-hole coalescence waveforms. Class. Quantum Gravity 24, S689–S700 (2007). arXiv:/0704.3764 [gr-qc]

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Ajith et al., A template bank for gravitational waveforms from coalescing binary black holes, I: Non-spinning binaries. (2007). arXiv:/0710.2335 [gr-qc]

  7. M. Alcubierre, B. Brügmann, P. Diener, M. Koppitz, D. Pollney, E. Seidel, R. Takahashi, Gauge conditions for long-term numerical black hole evolutions without excision. Phys. Rev. D 67, 084023 (2003). gr-qc/0206072

    Article  MathSciNet  Google Scholar 

  8. M. Ansorg, B. Brügmann, W. Tichy, A single-domain spectral method for black hole puncture data. Phys. Rev. D 70, 064011 (2004). gr-qc/0404056

    Article  Google Scholar 

  9. R. Arnowitt, S. Deser, C.W. Misner, The dynamics of general relativity, in Gravitation an Introduction to Current Research, ed. by L. Witten (Wiley, New York, 1962), pp. 227–265. gr-qc/0405109

    Google Scholar 

  10. J.G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, J. van Meter, Gravitational-wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett. 96, 111102 (2006). gr-qc/0511103

    Article  Google Scholar 

  11. J.G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, J. van Meter, M.C. Miller, Getting a kick out of numerical relativity. Astrophys. J 653, L93–L96 (2006). gr-qc/0603204

    Article  Google Scholar 

  12. T.W. Baumgarte, S.L. Shapiro, On the numerical integration of Einstein’s field equations. Phys. Rev. D 59, 024007 (1998). gr-qc/9810065

    Article  MathSciNet  Google Scholar 

  13. M.J. Berger, J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  14. E. Berti, V. Cardoso, J.A. González, U. Sperhake, Mining information from binary black hole mergers: a comparison of estimation methods for complex exponentials in noise. Phys. Rev. D 75, 124017 (2007). gr-qc/0701086

    Article  MathSciNet  Google Scholar 

  15. E. Berti, V. Cardoso, J.A. González, U. Sperhake, B. Brügmann, Multipolar analysis of spinning binaries. (2007). arXiv:/0711.1097 [gr-qc]

  16. E. Berti, V. Cardoso, J.A. González, U. Sperhake, M.D. Hannam, S. Husa, B. Brügmann, Inspiral, merger and ringdown of unequal mass black hole binaries: a multipolar analysis. Phys. Rev. D 76, 064034 (2007). gr-qc/0703053

    Article  Google Scholar 

  17. C. Bona, J. Massó, E. Seidel, J. Stela, First order hyperbolic formalism for numerical relativity. Phys. Rev. D 56, 3405–3415 (1997). gr-qc/9709016

    Article  MathSciNet  Google Scholar 

  18. J.M. Bowen, J.W. York Jr., Time-asymmetric initial data for black holes and black-hole collisions. Phys. Rev. D 21, 2047–2056 (1980)

    Article  Google Scholar 

  19. S. Brandt, B. Brügmann, A simple construction of initial data for multiple black holes. Phys. Rev. Lett. 78, 3606–3609 (1997)

    Article  Google Scholar 

  20. B. Brügmann, J.A. González, M.D. Hannam, S. Husa, U. Sperhake, Exploring black hole superkicks. (2007). arXiv:/0707.0135 [gr-qc]

  21. B. Brügmann, J.A. González, M.D. Hannam, S. Husa, U. Sperhake, W. Tichy, Calibration of moving puncture simulations. (2006). gr-qc/0610128

  22. B. Brügmann, W. Tichy, N. Jansen, Numerical simulation of orbiting black holes. Phys. Rev. Lett. 92, 211101 (2004). gr-qc/0312112

    Article  Google Scholar 

  23. Y. Bruhat, The Cauchy problem, in Gravitation: An Introduction to Current Research, ed. by L. Witten (Wiley, New York, 1962)

    Google Scholar 

  24. A. Buonanno, L.E. Kidder, L. Lehner, Estimating the final spin of a binary black hole coalescence. Phys. Rev. D 77, 026004 (2008). arXiv:/0709.3839 [astro-ph]

    Article  Google Scholar 

  25. M. Campanelli, Understanding the fate of merging supermassive black holes. Class. Quantum Gravity 22, S387–S393 (2005). astro-ph/0411744

    Article  MATH  Google Scholar 

  26. M. Campanelli, C.O. Lousto, P. Marronetti, Y. Zlochower, Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett. 96, 111101 (2006). gr-qc/0511048

    Article  Google Scholar 

  27. M. Campanelli, C.O. Lousto, Y. Zlochower, D. Merritt, Large merger recoils and spin flips from generic black-hole binaries. Astrophys. J. 659, L5–L8 (2007). Final version: http://www.arxiv.org/abs/gr-qc/0701164

    Article  Google Scholar 

  28. G.B. Cook, Initial data for numerical relativity. Living Rev. Relativ. 2000-5 (2000). Online article cited on 30 Sep 2004. http://relativity.livingreviews.org/Articles/lrr-2000-5

  29. T. Damour, A. Gopakumar, Gravitational recoil during binary black hole coalescence using the effective one body approach. Phys. Rev. D 73, 124006 (2006). gr-qc/0602117

    Article  Google Scholar 

  30. D. Garfinkle, Harmonic coordinate method for simulating generic singularities. Phys. Rev. D 65, 044029 (2002). gr-qc/0110013

    Article  MathSciNet  Google Scholar 

  31. J.A. González, M.D. Hannam, U. Sperhake, B. Brügmann, S. Husa, Supermassive kicks for spinning black holes. Phys. Rev. Lett. 98, 231101 (2007). gr-qc/0702052

    Article  Google Scholar 

  32. J.A. González, U. Sperhake, B. Brügmann, M.D. Hannam, S. Husa, The maximum kick from nonspinning black-hole binary inspiral. Phys. Rev. Lett. 98, 091101 (2007). gr-qc/0610154

    Article  MathSciNet  Google Scholar 

  33. M.D. Hannam, S. Husa, D. Pollney, B. Brügmann, N. Ó Murchadha, Geometry and regularity of moving punctures. Phys. Rev. Lett. 99, 241102 (2007). gr-qc/0606099

    Article  MathSciNet  Google Scholar 

  34. M.D. Hannam, S. Husa, U. Sperhake, B. Brügmann, J.A. González, Where post-Newtonian and numerical-relativity waveforms meet. Phys. Rev. D 77, 044020 (2008). arXiv:/0706.1305 [gr-qc]

    Article  Google Scholar 

  35. F. Herrmann, I. Hinder, D. Shoemaker, P. Laguna, Unequal-mass binary black hole plunges and gravitational recoil. Class. Quantum Gravity 24, S33–S42 (2007). gr-qc/0601026

    Article  MATH  MathSciNet  Google Scholar 

  36. S. Husa, J.A. González, M.D. Hannam, B. Brügmann, U. Sperhake, Reducing phase error in long numerical binary black hole evolutions with sixth order finite differencing. (2007). arXiv:/0706.0740 [gr-qc]

  37. S. Husa, M. Hannam, J.A. González, U. Sperhake, B. Brügmann, Reducing eccentricity in black-hole binary evolutions with initial parameters from post-Newtonian inspiral. (2007). arXiv:0706.0904

  38. P. Marronetti, W. Tichy, B. Brügmann, J.A. González, M.D. Hannam, S. Husa, U. Sperhake, Binary black holes on a budget: Simulations using workstations. Class. Quantum Gravity 24, S43–S58 (2007). gr-qc/0701123

    Article  MATH  Google Scholar 

  39. P. Marronetti, W. Tichy, B. Brügmann, J.A. González, U. Sperhake, High-spinning binary black hole mergers. (2007). arXiv:/0709.2160 [gr-qc]

  40. F. Pretorius, Evolution of binary black-hole spacetimes. Phys. Rev. Lett. 95, 121101 (2005). gr-qc/0507014

    Article  MathSciNet  Google Scholar 

  41. F. Pretorius, Numerical relativity using a generalized harmonic decomposition. Class. Quantum Gravity 22, 425–451 (2005). gr-qc/0407110

    Article  MATH  MathSciNet  Google Scholar 

  42. F. Pretorius, Binary black hole coalescence. (2007). arXiv:/0710.1338 [gr-qc]

  43. L. Rezzolla, P. Diener, E.N. Dorband, D. Pollney, C. Reissweg, E. Schnetter, The final spin from the coalescence of aligned-spin black-hole binaries. (2007). arXiv:/0710.3345 [gr-qc]

  44. E. Schnetter, S.H. Hawley, I. Hawke, Evolutions in 3D numerical relativity using fixed mesh refinement. Class. Quantum Gravity 21, 1465–1488 (2004). gr-qc/0310042

    Article  MATH  MathSciNet  Google Scholar 

  45. M. Shibata, T. Nakamura, Evolution of three-dimensional gravitational waves: Harmonic slicing case. Phys. Rev. D 52, 5428–5444 (1995)

    Article  MathSciNet  Google Scholar 

  46. C.F. Sopuerta, N. Yunes, P. Laguna, Gravitational recoil from binary black hole mergers: The close limit approximation. Phys. Rev. D 74, 124010 (2006). astro-ph/0608600

    Article  Google Scholar 

  47. U. Sperhake, Binary black-hole evolutions of excision and puncture data. Phys. Rev. D 76, 104015 (2007). gr-qc/0606079

    Article  MathSciNet  Google Scholar 

  48. U. Sperhake, E. Berti, V. Cardoso, J.A. González, B. Brügmann, Eccentric binary black-hole mergers: The transition from inspiral to plunge in general relativity. (2007). arXiv:/0710.3823 [gr-qc]

  49. J.W. York Jr., Kinematics and dynamics of general relativity, in Sources of Gravitational Radiation, ed. by L. Smarr (Cambridge University Press, Cambridge, 1979), pp. 83–126

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Brügmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brügmann, B., González, J.A., Hannam, M.D., Husa, S., Sperhake, U. (2009). Numerical Simulations of Compact Binary Systems. In: Wagner, S., Steinmetz, M., Bode, A., Brehm, M. (eds) High Performance Computing in Science and Engineering, Garching/Munich 2007. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69182-2_1

Download citation

Publish with us

Policies and ethics