Skip to main content

Measuring and Modeling Risk Using High-Frequency Data

  • Chapter
Book cover Applied Quantitative Finance

Volatility modelling is the key to the theory and practice of pricing financial products. Asset allocation and portfolio as well as risk management depend heavily on a correct modelling of the underlying(s). This insight has spurred extensive research in financial econometrics and mathematical finance. Stochastic volatility models with separate dynamic structure for the volatility process have been in the focus of the mathematical finance literature, see Heston (1993) and Bates (2000), while parametric GARCH-type models for the returns of the underlying(s) have been intensively analyzed in financial econometrics.

The validity of these models in practice though depends upon specific distributional properties or the knowledge of the exact (parametric) form of the volatility dynamics. Moreover, the evaluation of the predictive ability of volatility models is quite important in empirical applications. However, the latent character of the volatility poses a problem. To what measure should the volatility forecasts be compared to? Conventionally, the forecasts of daily volatility models, such as GARCH-type or stochastic volatility models, have been evaluated with respect to absolute or squared daily returns. In view of the excellent in-sample performance of these models, the forecasting performance, however, seems to be disappointing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • P. R. Hansen and A. Lunde (2006). Realized Variance and Market Microstructure Noise, Journal of Business & Economic Statistics 24: 127-161.

    Article  MathSciNet  Google Scholar 

  • B. Zhou (1996). High-Frequency Data and Volatility in Foreign-Exchange Rates, Journal of Business & Economic Statistics 14: 45-52.

    Article  Google Scholar 

  • Ole E. Barndorff-Nielsen, Peter R. Hansen, Asger Lunde and Neil Shephard (2008). Design-ing Realised Kernels to Measure the ex-post Variation of Equity Prices in the Presence of Noise, Econometrica, forthcoming.

    Google Scholar 

  • L. Zhang, P. A. Mykland and Y. Ait-Sahalia (1005). A Tale of Two Time Scales: Determin-ing Integrated Volatility With Noisy High-Frequency Data, Journal of the American Statistical Association 100(472): 1394-1411.

    Article  MathSciNet  Google Scholar 

  • R. Roll (1984). A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market, Journal of Finance 39: 1127-1139.

    Article  Google Scholar 

  • O. E. Barndorff-Nielsen and N. Shephard (2002). Estimating Quadratic Variation Using Realized Variance, Journal of Applied Econometrics 4,5: 457-477.

    Article  Google Scholar 

  • D. S. Bates (2000). Post-’87 Crash Fears in the S&P 500 Futures Option, Journal of Econo-metrics 94,1-2: 181-238.

    MATH  MathSciNet  Google Scholar 

  • S. L. Heston, (1993). A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options, The Review of Financial Studies 6(2): 327-343.

    Article  Google Scholar 

  • T. G. Andersen and T. Bollerslev, (1997). Heterogeneous Information Arrivals and Re-turn Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns, The Journal of Finance 52: 975-1005.

    Article  Google Scholar 

  • T. G. Andersen, T. Bollerslev, F. X. Diebold and P. Labys (2001). The Distribution of Real-ized Exchange Rate Volatility, Journal of the American Statistical Association 96: 42-55.

    Article  MathSciNet  Google Scholar 

  • T. G. Andersen, T. Bollerslev, F. X. Diebold and P. Labys (2003). Modeling and Forecasting Realized Volatility, Econometrica 71: 579-625.

    Article  MATH  MathSciNet  Google Scholar 

  • T. G. Andersen, T. Bollerslev, F. X. Diebold and J. Wu, (2006). Realized Beta: Persistence and Predictability, Advances in Econometrics: Econometric Analysis of Economic and Financial Time Series, Volume B Editor: T.Fomby: 1-40.

    Google Scholar 

  • T. G. Andersen and T. Bollerslev (1998). Answering the Skeptics: Yes, Standard Volatility Models do Provide Accurate Forecasts, International Economic Review 39: 885-905.

    Article  Google Scholar 

  • T. G. Andersen, T. Bollerslev and F. X. Diebold, (2008). Roughing it Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility, Re-view of Economics and Statistics, forthcoming.

    Google Scholar 

  • Torben G. Andersen, Tim Bollerslev and Xin Huang (2006). A Semiparametric Frame-work for Modeling and Forecasting Jumps and Volatility in Speculative Prices, Duke University, Working Paper.

    Google Scholar 

  • R. T. Baillie, T. Bollerslev and H. O. Mikkelsen (1996). Fractionally Integrated Generalized Autoregressive Conditional Heteroskedasticity, Journal of Econometrics 74: 3-30.

    Article  MATH  MathSciNet  Google Scholar 

  • F. M. Bandi, J. R. Russell and J. Zhu (2008). Using High-Frequency Data in Dynamic Portfolio Choice, Econometric Reviews, forthcoming.

    Google Scholar 

  • O. E. Barndorff-Nielsen and N. Shephard (2002). Econometric Analysis of Realised Volatility and its Use in Estimating Stochastic Volatility Models, Journal of the Royal Statistical Society, Series B 64: 253-280.

    Article  MATH  MathSciNet  Google Scholar 

  • O. E. Barndorff-Nielsen and N.S hephard (2004). Econometric Analysis of Realized Co-variation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics, Econometrica 72: 885-925.

    Article  MATH  MathSciNet  Google Scholar 

  • G. H. Bauer and K. Vorkink (2007 ). Multivariate Realized Stock Market Volatility, Bank of Canada, Working Paper.

    Google Scholar 

  • T. Bollerslev, U. Kretschmer, C. Pigorsch, and G. Tauchen (2008). A Discrete-Time Model for Daily S&P500 Returns and Realized Variations: Jumps and Leverage Effects, Journal of Econometrics, forthcoming.

    Google Scholar 

  • M. Blume (1975). Betas and Their Regression Tendencies, Journal of Finance 30: 785-95.

    Article  Google Scholar 

  • T. Bollerslev, R. F. Engle, J. M. Wooldridge (1988). A Capital Asset Pricing Model with Time Varying Covariances, Journal of Political Economy 96: 116-131.

    Article  Google Scholar 

  • T. Bollerslev and B. Y. B. Zhang (2003). Measuring and Modeling Systematic Risk in Factor Pricing Models Using High-frequency Data, Journal of Empirical Finance 10: 533-558.

    Article  Google Scholar 

  • T. Bos and P. Newbold (1984). An Empirical Investigation of the Possibility of Stochastic Systematic Risk in the Market Model, Journal of Business 57: 35-41.

    Article  Google Scholar 

  • P. A. Braun, D. B. Nelson and A. M. Sunier (1995). Good News, Bad News, Volatility, and Betas, Journal of Business 50: 1575-1603.

    Google Scholar 

  • R. Chiriac and V. Voev (2007). Long Memory Modelling of Realized Covariance Matrices, University of Konstanz, Working Paper.

    Google Scholar 

  • F. Corsi, S. Mittnik, C. Pigorsch and U. Pigrosch (2008). The Volatility of Realized Volatility, Econometric Reviews 27: 46-78.

    Article  MATH  MathSciNet  Google Scholar 

  • D. W. Collins, J. Ledolter and J. Rayburn (1987). Some Further Evidence on the Stochastic Properties of Systematic Risk, Journal of Business 60: 425-448.

    Article  Google Scholar 

  • F.Corsi (2004). A Simple Long Memory Model of Realized Volatility, University of Southern Switzerland, Woking Paper.

    Google Scholar 

  • Z. Da and E. Schaumburg (2006). The Factor Structure of Realized Volatility and its Im-plications for Option Pricing, University of Notre Dame, Working Paper.

    Google Scholar 

  • R. Deo, C. Hurvich and Y. Lu (2006). Forecasting Realized Volatility Using a Long-Memory Stochastic Volatility Model: Estimation, Prediction and Seasonal Adjustment, Journal of Econometrics 131(1-2): 29-58.

    Article  MathSciNet  Google Scholar 

  • F. X. Diebold and A. Inoue (2001). Long Memory and Regime Switching , Journal of Econometrics 2001: 131-159.

    Google Scholar 

  • B. Dumas and B. Solnik (1995). The World Price of Exchange Rate Risk, Journal of Finance 50: 445-480.

    Article  Google Scholar 

  • R. F. Engle and G. G. J. Lee (1999). A Permanent and Transitory Component Model of Stock Return Volatility, Cointegration, Causality, and Forecasting: A Festschrift in Honor of Clive W. J. Granger: 475-497.

    Google Scholar 

  • F. J. Fabozzi and J. C. Francis (1978). Beta as a Random Coefficient, Journal of Financial and Quantitative Analysis 13: 101-116.

    Article  Google Scholar 

  • R. W. Faff, D.Hillier and J. Hillier, (2000). Time Varying Beta Risk: An Analysis of Alter-native Modelling Techniques, Journal of Business, Finance and Accounting 27: 523-554.

    Article  Google Scholar 

  • W. E. Ferson and C. R. Harvey (1991). The Variation of Economic Risk Premiums, Journal of Poltical Economy 99: 385-415.

    Article  Google Scholar 

  • W. E. Ferson and C. R. Harvey (1993). The Risk and Predictability of International Equity Returns, Review of Financial Studies 6527-566.

    Google Scholar 

  • W. E. Ferson and R. A. Korajczyk (1995). Do Arbitrage Pricing Models Explain the Pre-dictability of Stock Returns?, Journal of Business 68: 309-349.

    Article  Google Scholar 

  • C. Gourieroux and J. Jasiak (2001). Financial Econometrics: Problems, Models, and Meth-ods, Princeton University Press, Princeton

    Google Scholar 

  • C. W. J. Granger (1980). Long Memory Relationships and the Aggregation of Dynamic Models, Journal of Econometrics 14: 227-238.

    Article  MATH  MathSciNet  Google Scholar 

  • C. W. J. Granger and N. Hyung (2004). Occasional Structural Breaks and Long Memory with an Application to the S&P 500 Absolute Stock Returns, Journal of Empirical Finance 11: 399-421.

    Article  Google Scholar 

  • C. W. J. Granger and R. Joyeux (1980). An Introduction to Long-Range Time Series Models and Fractional Differencing, Journal of Time Series Analysis 1: 15-30.

    Article  MATH  MathSciNet  Google Scholar 

  • C. W. J. Granger and T. Teräsvirta (1999). A Simple Nonlinear Time Series Model with Misleading Linear Properties, Economic Letters 62: 161-165.

    Article  MATH  Google Scholar 

  • E. Hillebrand and M. Medeiros (2007). Forecasting Realized Volatility Models: the Benefits of Bagging and Non-Linear Specifications, Louisana State University, Working Paper.

    Google Scholar 

  • J. R. M. Hosking (1981). Fractional Differencing, Biometrika 68: 165-176.

    Article  MATH  MathSciNet  Google Scholar 

  • N. L. Jacob (1971). The Measurement of Systematic Risk for Securities and Portfolios: Some Empirical Results, Journal of Financial and Quantitative Analysis 6: 815-834.

    Article  Google Scholar 

  • S. J. Koopman, B. Jungbacker and E. Hall (2005). Forecasting Daily Variability of the S&P 100 Stock Index Using Historical, Realised and Implied Volatility Measurements, Journal of Empirical Finance 12,3: 445-475.

    Article  Google Scholar 

  • X. Li (2003). On Unstable Beta Risk and Its Modelling Techniques for New Zealand Industry Portfolios, Massey University, Working Paper.

    Google Scholar 

  • T. Lux and M. Marchesi (1999). Scaling and Criticality in a Stochastic Multi-Agent Model of a Financial Market, Nature 397: 498-500

    Article  Google Scholar 

  • M. Martens, D. van Dijk and M.dePooter (2004). Modeling and Forecasting S&P 500 Volatil-ity: Long Memory, Structural Breaks and Nonlinearity, Erasmus University Rotterdam, Working Paper.

    Google Scholar 

  • M. Martens and J. Zein (2004). Predicting Financial Volatility: High-Frequency Time-Series Forecasts vis-à-vis Implied Volatility, Journal of Futures Markets 11: 1005-1028.

    Article  Google Scholar 

  • M. McAleer and M.Medeiros (2008). Realized Volatilty: A Review, Econometric Reviews 26: 10-45.

    Article  MathSciNet  Google Scholar 

  • M. McAleer and M.Medeiros (2006). A Multiple Regime Smooth Transition Heterogenous Autoregressive Model for Long Memory and Asymmetries, Pontifical Catholic Univer-sity of Rio de Janeiro, Working Paper.

    Google Scholar 

  • U. A. Müller, M. M. Dacorogna, R. D. Dav, R. B. Olsen, O. V. Pictet and J. E. von Weizsäcker (1997). Volatilities of Different Time Resolutions - Analyzing the Dynamics of Market Components, Journal of Empirical Finance 4(2-3); 213-239.

    Article  Google Scholar 

  • T. Mikosch and C. Stărică (2004). Nonstationarities in Financial Time Series, the Long-range Dependence, and the IGARCH Effects, The Review of Economics and Statistics 86: 378-390.

    Article  Google Scholar 

  • D. B. Nelson and D. P. Foster (1994). Asymptotic Filtering Theory for Univariate ARCH Models, Econometrica 62: 1-41.

    Article  MATH  MathSciNet  Google Scholar 

  • M. dePooter, M. Martens and D. van Dijk (). Predicting the Daily Covariance Matrix for S&P 100 Stocks Using Intraday Data - But Which Frequency to Use?, Econoemtric Reviews, forthcoming.

    Google Scholar 

  • S. Pong, M. B. Shackleton, S. J. Taylor and X. Xu (). Forecasting Currency Volatility: A Comparison of Implied Volatilities and AR(FI)MA Models, Journal of Banking & Finance 28: 2541-2563.

    Google Scholar 

  • M. Scharth and M. Medeiros (2006). Asymmetric Effects and Long Memory in the Volatility of DJIA Stocks, Pontifical Catholic University of Rio de Janeiro, Working Paper.

    Google Scholar 

  • S. Sunder (1980). Stationarity of Market Risk: Random Coefficients Tests for Individual Stocks, Journal of Finance 35: 883-896.

    Article  Google Scholar 

  • D. D. Thomakos (2003). Realized Volatility in the Futures Markets, Journal of Empirical Finance 10: 321-353.

    Article  Google Scholar 

  • V. Voev (2008). Dynamic Modelling of Large-Dimensional Covariance Matrices, in High Frequency Financial Econometrics, edited by L.Bauwens, W.Pohlmeier and D.Veredas, Physica-Verlag, Heidelberg: 293-312.

    Google Scholar 

  • C. M. Hafner and H. Herwartz (1998). Time Varying Market Price of Risk in the CAPM-Approaches, Empirical Evidence and Implications, Finance 19: 93-112.

    Google Scholar 

  • P. K. Clark (1973). A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices, Econometrica 41: 135-156.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Härdle, W., Hautsch, N., Pigorsch, U. (2009). Measuring and Modeling Risk Using High-Frequency Data. In: Härdle, W.K., Hautsch, N., Overbeck, L. (eds) Applied Quantitative Finance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69179-2_13

Download citation

Publish with us

Policies and ethics