Skip to main content

Interactions between Spike-Timing-Dependent Plasticity and Phase Response Curve Lead to Wireless Clustering

  • Conference paper
Neural Information Processing (ICONIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4984))

Included in the following conference series:

  • 1208 Accesses

Abstract

A phase response curve characterizes the signal transduction between neurons in a minimal manner,whereas spike-timing-dependent plasiticity (STDP) characterizes the way to rewire networks in an activity-dependent manner. The present paper demonstrates that these two key properties both related to spikes work synergetically to carve functionally useful circuits in the brain. STDP working on a population of neurons that prefer asynchrony turns out to convert the initial asynchronous firing to clustered firing with synchrony within a cluster. They get synchronized within a cluster despite their preference to asynchrony because STDP selectively disrupts intra-cluster connections, which we call wireless eclustering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kuramoto, Y.: Chemical oscillations,waves,and turbulence. Springer, Berlin (1984)

    MATH  Google Scholar 

  2. Ermentrout, G., Kopell, N.: SIAM J. Math.Anal. 15, 215 (1984)

    MATH  MathSciNet  Google Scholar 

  3. Markram, H., et al.: Science 275, 213 (1997); Bell, C.C., et al.: Nature 387, 278 (1997); Magee, J.C., Johnston, D.: Science 275, 209 (1997); Bi, G.-Q., Poo, M.-M.: J. Neurosci. 18, 10464 (1998); Feldman, D. E., Neuron 27, 45 (2000); Nishiyama, M., et al.: Nature 408, 584 (2000)

    Google Scholar 

  4. Song, S., et al.: Nat. Neurosci. 3, 919 (2000)

    Google Scholar 

  5. van Rossum, M.C., Turrigiano, G.G., Nelson, S.B.: J. Neurosci. 22,1956 (2000)

    Google Scholar 

  6. Rubin, J., et al.: Phys. Rev. Lett. 86, 364 (2001)

    Google Scholar 

  7. Abbott, L.F., Nelson, S.B.: Nat. Neurosci. 3, 1178 (2000)

    Google Scholar 

  8. Gerstner, W., Kistler, W.M.: Spiking neuron model. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  9. Câteau, H., Fukai, T.: Neural Comput., 15, 597 (2003)

    Google Scholar 

  10. Izhikevich, E.M.: IEEE Trans. Neural Netw. 15, 1063 (2004)

    Google Scholar 

  11. Karbowski, J.J., Ermentrout, G.B.: Phys. Rev. E. 65, 031902 (2002)

    Google Scholar 

  12. Nowotny, T., et al.: J. Neurosci. 23, 9776 (2003)

    Google Scholar 

  13. Zhigulin, V.P., et al.: Phys. Rev. E, 67, 021901 (2003)

    Google Scholar 

  14. Masuda, N., Kori, H.: J. Comp. Neurosci, 22, 327 (2007)

    Google Scholar 

  15. Froemke, R.C., Dan, Y.: Nature, 416, 433 (2002)

    Google Scholar 

  16. Wang, H.-X., et al.: Nat. Neurosci, 8, 187 (2005)

    Google Scholar 

  17. Levy, N., et al.: Neural Netw. 14, 815 (2001)

    Google Scholar 

  18. Kitano, K., Câteau, H., Fukai, T.: Neuroreport, 13, 795 (2002)

    Google Scholar 

  19. Ermentrout, G.B.: Neural Comput. 8, 979 (1996)

    Google Scholar 

  20. Reyes, A.D., Fetz, E.E.: J. Neurophysiol. 69, 1673 (1993); Reyes, A.D., Fetz, E.E.: J. Neurophysiol. 69, 1661 (1993); Oprisan, S.A., Prinz, A.A., Canavier, C.C.: Biophys. J., 87, 2283 (2004); Netoff, T.I., et al.: J Neurophysiol. 93, 1197 (2005); Lengyel, M., et al.: Nat. Neurosci. 8, 1667 (2005); Galan, R.F., Ermentrout, G.B., Urban, N.N.: Phys. Rev. Lett. 94, 158101 (2005); Preyer, A.J., Butera, R.J.: Phys. Rev. Lett. 95, 13810 (2005); Goldberg, J.A., Deister, C. A., Wilson, C.J.: J. Neurophysiol., 97, 208 (2007); Tateno, T., Robinson, H.P.: Biophys. J., 92, 683 (2007); Mancilla, J.G., et al.: J. Neurosci. 27, 2058 (2007); Tsubo, Y., et al.: Eur J. Neurosci, 25, 3429 (2007)

    Google Scholar 

  21. Câteau, H., Reyes, A.D.: Phys. Rev. Lett. 96, 058101, and references therein (2006)

    Google Scholar 

  22. Lengyel, M., et al.: Nat. Neurosci. 8, 1677 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masumi Ishikawa Kenji Doya Hiroyuki Miyamoto Takeshi Yamakawa

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Câteau, H., Kitano, K., Fukai, T. (2008). Interactions between Spike-Timing-Dependent Plasticity and Phase Response Curve Lead to Wireless Clustering. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds) Neural Information Processing. ICONIP 2007. Lecture Notes in Computer Science, vol 4984. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69158-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69158-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69154-9

  • Online ISBN: 978-3-540-69158-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics