Skip to main content

Relativistic Quantum Dynamics in Intense Laser Fields

  • Chapter
Progress in Ultrafast Intense Laser Science

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 91))

  • 810 Accesses

Abstract

We investigate the relativistic dynamics of electrons in intense laser fields. Examples of both free and bound electron dynamics are discussed using the approach appropriate for each particular case, i.e., either classical relativistic mechanics or relativistic quantum mechanics. The algorithm for numerically solving the Dirac equation is explained in detail before showing results that were obtained for both free and bound electronic wave packets in interaction with laser fields. In the case of the former, we discuss Volkov wave packets and point out features such as Lorentz contraction, spin and non-dipole effects. A sevenfold charged oxygen ion in a counterpropagating beam illustrates the latter and demonstrates a method for generating high-energy electron—nucleus collisions. Furthermore, we briefly outline the procedure for solving the classical equations of motion in arbitrary electromagnetic fields. A special field configuration (that of a radially polarized laser beam) is considered as an example. We discuss the fields that result from solving Maxwell's equations and calculate the energy that may be gained by a single electron in interaction with this particular configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Gontier, M. Trahin, Phys. Rev. 172, 83 (1968)

    Article  ADS  Google Scholar 

  2. P. Agostini, F. Fabre, G. Mainfray, G. Petite, N.K. Rahman, Phys. Rev. Lett. 42, 1127 (1979)

    Article  ADS  Google Scholar 

  3. A. McPherson et al., J. Opt. Soc. Am. B 4, 595 (1987)

    Article  ADS  Google Scholar 

  4. M. Lewenstein, P. Balcou, M.Y. Ivanov, A. L'Huillier, P.B. Corkum, Phys. Rev. A 49, 2117 (1994)

    Article  ADS  Google Scholar 

  5. M. Protopapas, C.H. Keitel, P.L. Knight, Rep. Prog. Phys. 60, 389 (1997)

    Article  ADS  Google Scholar 

  6. C.J. Joachain, M. Dörr, N. Kylstra, Adv. At. Mol. Opt. Phys. 42, 225 (2000)

    Article  Google Scholar 

  7. H.F. Krause et al., Phys. Rev. Lett. 80, 1190 (1998)

    Article  ADS  Google Scholar 

  8. C. Brandau et al., Phys. Rev. Lett. 89, 053201 (2002)

    Article  ADS  Google Scholar 

  9. G.A. Mourou, T. Tajima, S.V. Bulanov, Rev. Modern Phys. 78, 309 (2006)

    Article  ADS  Google Scholar 

  10. P.A.M. Dirac, Proc. R. Soc. (London) Series A 117, 610 (1928)

    Article  ADS  Google Scholar 

  11. C.H. Keitel, Contemp. Phys. 42, 353 (2001)

    Article  ADS  Google Scholar 

  12. A. Maquet, R. Grobe, J. Mod. Opt. 49, 2001 (2002)

    Article  MATH  ADS  Google Scholar 

  13. W. Gordon, Z. Phys. 48, 11 (1928)

    Article  ADS  Google Scholar 

  14. C.G. Darwin, Proc. R. Soc. Lond., Ser. A 118, 654 (1928)

    Article  ADS  Google Scholar 

  15. D.M. Wolkow, Z. Phys. 94, 250 (1935)

    Article  MATH  ADS  Google Scholar 

  16. J.A. Fleck, J.R. Morris, M.D. Feit, Appl. Phys. 10, 129 (1976)

    Article  ADS  Google Scholar 

  17. R. Heather, Comput. Phys. Commun. 63, 446 (1991)

    Article  MATH  ADS  Google Scholar 

  18. O. Latinne, C.J. Joachain, M. Dörr, Europhys. Lett. 26, 333 (1994)

    Article  ADS  Google Scholar 

  19. J.R.V. de Aldana, L. Roso, Phys. Rev. A 61, 043403 (2000)

    Article  ADS  Google Scholar 

  20. R. Fischer, A. Staudt, C.H. Keitel, Comput. Phys. Commun. 157, 139 (2004)

    Article  ADS  Google Scholar 

  21. M. Protopapas, C.H. Keitel, P.L. Knight, J. Phys. B: At. Mol. Opt. Phys. 29, L591 (1996)

    Article  ADS  Google Scholar 

  22. S.X. Hu, C.H. Keitel, Phys. Rev. A 63, 053402 (2001)

    Article  ADS  Google Scholar 

  23. R. Taïeb, V. Véniard, A. Maquet, J Modern Opt. 50, 365 (2003)

    Article  ADS  Google Scholar 

  24. U.W. Rathe, C.H. Keitel, M. Protopapas, P.L. Knight, J. Phys. B: At. Mol. Opt. Phys. 30, L531 (1997)

    Article  ADS  Google Scholar 

  25. N.J. Kylstra, A.M. Ermolaev, C.J. Joachain, J. Phys. B: At. Mol. Opt. Phys. 30, L449 (1997)

    Article  ADS  Google Scholar 

  26. J.W. Braun, Q. Su, R. Grobe, Phys. Rev. A 59, 604 (1999)

    Article  ADS  Google Scholar 

  27. M. Casu, C.H. Keitel, Europhys. Lett. 58, 496 (2002)

    Article  ADS  Google Scholar 

  28. K. Momberger, A. Belkacem, A.H. Sørensen, Phys. Rev. A 53, 1605 (1995)

    Article  ADS  Google Scholar 

  29. Q. Su, B.A. Smetanko, R. Grobe, Opt. Express 2, 277 (1997)

    Article  ADS  Google Scholar 

  30. L.N. Gaier, C.H. Keitel, Phys. Rev. A 65, 023406 (2002)

    Article  ADS  Google Scholar 

  31. A. Pukhov, Rep. Prog. Phys. 66, 47 (2003)

    Article  ADS  Google Scholar 

  32. C. Müller, N. Grün, W. Scheid, Phys. Lett. A 242, 245 (1998)

    Article  ADS  Google Scholar 

  33. M. Frigo, S.G. Johnson, FFTW: An adaptive software architecture for the FFT, in Proc. 1998 IEEE Intl. Conf. Acoustics Speech and Signal Processing, vol. 3 (IEEE, 1998), pp. 1381–1384

    Google Scholar 

  34. G.R. Mocken, C.H. Keitel, J. Comput. Phys. 199, 558 (2004)

    Article  MATH  ADS  Google Scholar 

  35. L.L. Foldy, S.A. Wouthuysen, Phys. Rev. 78, 29 (1950)

    Article  MATH  ADS  Google Scholar 

  36. L.C. Biedenharn, L.P. Horwitz, Foundations Phys. 14, 953 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  37. V. Alonso, S.D. Vincenzo, L. Mondino, Eur. J. Phys. 18, 315 (1997)

    Article  Google Scholar 

  38. For a review, see Y.I. Salamin, S.X. Hu, K.Z. Hatsagortsyan, C.H. Keitel, Phys. Rep. 427, 41 (2006) and references therein

    Article  ADS  Google Scholar 

  39. L.S. Brown, T.W.B. Kibble, Phys. Rev. 133, A705 (1964)

    Article  ADS  Google Scholar 

  40. A.I. Nikishov, V.I. Ritus, Zh. Éksp. Teor. Fiz. 46, 776 (1964)

    MathSciNet  Google Scholar 

  41. A.I. Nikishov, V.I. Ritus, Sov. Phys. JETP 19(2), 529–541 (1964)

    MathSciNet  Google Scholar 

  42. J.S. Román, L. Roso, H.R. Reiss, J. Phys. B: At. Mol. Opt. Phys. 33, 1869 (2000)

    Article  ADS  Google Scholar 

  43. P. Strange, Relativistic Quantum Mechanics, 1st edn. (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  44. S. Zakowicz, J. Math. Phys. 46, 032304 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  45. J.S. Román, L. Plaja, L. Roso, Phys. Rev. A 64, 063402 (2001)

    Article  ADS  Google Scholar 

  46. V. Bargmann, L. Michel, V.L. Telegdi, Phys. Rev. Lett. 2, 435 (1959)

    Article  ADS  Google Scholar 

  47. M.W. Walser, C.H. Keitel, J. Phys. B: At. Mol. Opt. Phys. 33, L221 (2000)

    Article  ADS  Google Scholar 

  48. J.S. Román, L. Roso, L. Plaja, J. Phys. B: At. Mol. Opt. Phys. 37, 435 (2004)

    Article  ADS  Google Scholar 

  49. P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)

    Article  ADS  Google Scholar 

  50. C.C. Chirila, C.J. Joachain, N.J. Kylstra, R.M. Potvliege, Phys. Rev. Lett. 93, 243603 (2004)

    Article  ADS  Google Scholar 

  51. G.R. Mocken, C.H. Keitel, J. Phys. B: At. Mol. Opt. Phys. 37, L275 (2004)

    Article  ADS  Google Scholar 

  52. C.H. Keitel, S.X. Hu, Appl. Phys. Lett. 80, 541 (2002)

    Article  ADS  Google Scholar 

  53. Y.I. Salamin, F.H.M. Faisal, Phys. Rev. A 54, 4383 (1996)

    Article  ADS  Google Scholar 

  54. B.C. Walker et al., Opt. Express 5, 196 (1999)

    Article  ADS  Google Scholar 

  55. G.R. Mocken, Relativistische Quantendynamik in extrem starken Laserfeldern, PhD Thesis, Universität Freiburg (2005)

    Google Scholar 

  56. Y.I. Salamin, C.H. Keitel, Phys. Rev. Lett. 88, 095005 (2002)

    Article  ADS  Google Scholar 

  57. S.X. Hu, A.F. Starace, Phys. Rev. Lett. 88, 245003 (2002)

    Article  ADS  Google Scholar 

  58. A. Maltsev, T. Ditmire, Phys. Rev. Lett. 90, 0053002 (2003)

    Article  ADS  Google Scholar 

  59. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1998)

    Google Scholar 

  60. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, G. Leuchs, Appl. Phys. B 72, 109 (2001)

    ADS  Google Scholar 

  61. R. Dorn, S. Quabis, G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003)

    Article  ADS  Google Scholar 

  62. Y. Kozawa, S. Sato, Opt. Lett. 30, 3036 (2005)

    Article  Google Scholar 

  63. Y. Kozawa, S. Sato, Opt. Lett. 31, 820 (2006)

    Article  ADS  Google Scholar 

  64. P. Serafim, P. Sprangle, B. Hafizi, IEEE Trans. Plasma Sci. 28, 1155 (2000)

    Article  ADS  Google Scholar 

  65. Y.I. Salamin, Opt. Lett. 31, 2619 (2006)

    Article  ADS  Google Scholar 

  66. Y.I. Salamin, New J. Phys. 8, 133 (2006), ibid, 10, 069801 (2008)

    Article  ADS  Google Scholar 

  67. Y.I. Salamin, Phys. Rev. A 73, 043402 (2006)

    Article  ADS  Google Scholar 

  68. I. Bialynicki-Birula, Phys. Rev. Lett. 93, 020402 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mocken, G.R., Salamin, Y.I., Keitel, C.H. (2009). Relativistic Quantum Dynamics in Intense Laser Fields. In: Yamanouchi, K., Becker, A., Li, R., Chin, S.L. (eds) Progress in Ultrafast Intense Laser Science. Springer Series in Chemical Physics, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69143-3_6

Download citation

Publish with us

Policies and ethics