Skip to main content

A Review on Feature Extraction & Classification Techniques for Biosignal Processing (Part III: Electromyogram)

  • Conference paper
4th Kuala Lumpur International Conference on Biomedical Engineering 2008

Part of the book series: IFMBE Proceedings ((IFMBE,volume 21))

Abstract

This paper concentrates on Electromyogram (EMG) signal processing with the emphasis on Neuropathies and Myopathies Disease. This review paper also will focus on the structure and learning algorithm of the classification techniques with potential of further expansion are identified for future research. This paper discussed more into depth on two algorithms which is Detrended Fluctuation Analysis for feature extraction and Support Vector Machine for classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F H Y Chan, Y S Yang F K Lam et al (2000) Classification for prosthesis control, IEEE transactions on rehabilitation engineering, vol. 8, no. 3

    Google Scholar 

  2. B Hudgins P A Parker et al (1993) A new strategy for multifunction myoelectric control

    Google Scholar 

  3. C K Peng S.V Buldyrev S. Havlin M. Simons H.E Stanley A.L. Goldberger et al (1994), Phys. Rev. E 49, p. 1685.

    Article  Google Scholar 

  4. B Karlik (1999) Differentiating type of muscle movement via modeling and neural network classification, Turk J Elec Engin, vol.7, NO.1–3, Department of Electrical and Electronic Engineering,University of Celal Bayar,Manisa-TURKEY

    Google Scholar 

  5. J Kilby (2005) Wavelet analysis and classification of surface electromyography signals

    Google Scholar 

  6. Bornato P de Alessio T Knaflitz M et al (1998) A statistical method for the measurement of the muscle activation intervals from surface myoelectric signal gait

    Google Scholar 

  7. Laterza F Olmo G et al (1997) Analysis of EMG signals by means of the matched wavelet transform

    Google Scholar 

  8. A Goldberger L Amaral L Glass J M Hausdroff P C H Ivanov R G Mark J E Mietus JE G B Moody C K Peng H E Stanley et al Physiobank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for complex Physiological Signals. Circulation 101(23): pp.215–pp.220.

    Google Scholar 

  9. K Hu P C Ivanov Z. Chen P Carpena H E Stanley et al (2002) Effects of nonststionarities on detrended fluctuation analysis, Physical Review, vol. 65, 041107.

    Google Scholar 

  10. Pattichis C S Pattichis M S et al (1999) Time-scale analysis of motor unit action potentials. IEEE Trans Biomed Eng, 46(11):1320–1329.

    Article  Google Scholar 

  11. Ismail A R Asfour S (1998) Continuous wavelet transform application to EMG signals during human gait. Thirty-Second Asilomar Conference on Signals, Systems & Computers, 1:325–329.

    Article  Google Scholar 

  12. Davies M R, Reisman S (1994) Time frequency analysis of the electromyogram during fatigue, Proceedings of the 20th Annual Northeast Bioengineering Conference, pp. 93–95.

    Google Scholar 

  13. Nikias C L Petropulu A P et al (1993) Higher-spectral analysis: a nonlinear signal processing framework. Prentice Hall, New Jersey

    Google Scholar 

  14. Nikias C L Mendel J M et al (1993) Signal processing with higherorder spectra. IEEE Signal Processing Magazine, 10:10–37.

    Article  Google Scholar 

  15. J Kwon D Lee S Lee N Kim S Hong et al Emg Signals recognition for continuous prosthetic arm control purpose, Dept. of Electronic Eng, Inha University

    Google Scholar 

  16. Boualem R Peter O et al (1990) A methodology for detection and classification of some underwater acoustic signals using timefrequency analysis techniques. IEEE Trans Acoust Speech Signal Processing

    Google Scholar 

  17. M B I Reaz, M S Hussain, EMG analysis using wavelet functions to determine muscle contraction, Dept. of Electrical and Computer Engineering International Islamic University Malaysia Gombak, Malaysia

    Google Scholar 

  18. Shahid S (2004), Higher order statistics techniques applied to emg signal analysis and characterization, University of Limerick, Ireland.

    Google Scholar 

  19. A Hiraiwa, K Shimohara, Y Tohmaga, EMG analysis and classification by neural network

    Google Scholar 

  20. Wang L Buchanan T.S (2002) Prediction of joint moments using a neural network model of muscle activations from EMG signals

    Google Scholar 

  21. M Akay C Mello (1997) Wavelets for biomedical signal processing

    Google Scholar 

  22. Application to biomedical signals, IEEE Colloquium on Time-Frequency of Biomedicd signal, pp, 211.213.

    Google Scholar 

  23. P J Sparto M Pamianpour E A Barriq J M Iagadcrsh et al (2002) Wavelet and short-time fourier transform analysis of electromyography for detection of back muscle fatigue, IEEE T r m. Rehab. Eng., vol. 8, issue: 3, pp. 433–436

    Article  Google Scholar 

  24. M U, A Aldmubi (1996) A review of wavelets in biomedical applications, Roc. IEEE, vol. 84, issue: 4, pp. 626–638

    Google Scholar 

  25. D Boca A, Park D C et al (1994) Myoelectric signal recognition using fuzzy clustering and artificial neural networks in real time. IEEE International Conference on Neural Networks, IEEE World Congress on Computational Intelligence

    Google Scholar 

  26. A Subasi M Yilmaz H R Ozcalik et al (2006) Classification of EMG signals using wavelet neural network. Journal of Neuroscience Methods 360–367

    Google Scholar 

  27. Chan FHY Yang Y-S Lam F K Zhang Y-T, Parker P A et al (2000) Fuzzy EMG classification for prosthesis control

    Google Scholar 

  28. Cheron G Draye J P Bourgeios M et al (1996) A dynamic neural network identification of electromyography and trajectory relationship during complex movements. IEEE Trans Biomed Eng 1996, 43(5):552–558.

    Article  Google Scholar 

  29. Lanyi X Adler A (2004) An improved method for muscle activation detection during gait. Canadian Conference of Electrical and Computer Engineering

    Google Scholar 

  30. Hagg G. M. (1992) Interpretation of EMG spectral alterations and indexes at sustained contraction

    Google Scholar 

  31. C K Peng S V Buldyrev S Havlin (1994) Mosaic organization of DNA nucleotides, volume 49, Number 2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emran Mohd Tamil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tamil, E.M., Bashar, N.S., Idris, M.Y.I., Tamil, A.M. (2008). A Review on Feature Extraction & Classification Techniques for Biosignal Processing (Part III: Electromyogram). In: Abu Osman, N.A., Ibrahim, F., Wan Abas, W.A.B., Abdul Rahman, H.S., Ting, HN. (eds) 4th Kuala Lumpur International Conference on Biomedical Engineering 2008. IFMBE Proceedings, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69139-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69139-6_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69138-9

  • Online ISBN: 978-3-540-69139-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics