Skip to main content

A Review on Feature Extraction & Classification Techniques for Biosignal Processing (Part II: Electroencephalography)

  • Conference paper
4th Kuala Lumpur International Conference on Biomedical Engineering 2008

Part of the book series: IFMBE Proceedings ((IFMBE,volume 21))

Abstract

This paper concentrates on Electroencephalography (EEG) signal processing with the emphasis on seizure detection. Manually by reviewing EEG recordings for detection of electrographical patterns is a time consuming business. Therefore, the ability to automate the classification of interesting electrographical patterns is a good supplement to the wide range of detection algorithms currently used for EEG analysis. Multi channel recordings of the electrographically patterns from neural currents in the brain would generate a large amounts of data. Suitable feature extraction methods are useful to facilitate the representation and interpretation of the data

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E Cordingley, MD, PhD, Electroencephalograms (EEGs): Catching a Brain Wave.

    Google Scholar 

  2. D. Abasolo, R. Hornero, C. Gomez et al, Analysis of EEG background activity in Alzheimer’s disease patients with Lempel-Ziv complexity and central tendency measure, Medical Engineering & Physics 28 (2006):315–322.

    Google Scholar 

  3. R. Sucholeiki, MD, Comprehensive Seizure and Epilepsy Program, The Neurosciences Institute at Central DuPage Hospital, Normal EEG Waveforms.

    Google Scholar 

  4. C. Robert, J. Gaudy, A. Limoge, Electroencephalogram processing using neural networks, Clinical Neurophysiology 113 (2002):694–701.

    Article  Google Scholar 

  5. M. Hoeve, B.J. Zwaag, M. Burik et al, Detecting Epileptic seizure activity in the EEG by Independent Component Analysis

    Google Scholar 

  6. S. Ghosh-Dastidar, H. Adeli, Mixed-band wavelet-chaos neural network methodology for epilepsy and epilsptic seizure detection, IEEE Transactions on Biomedical Engineering, Vol. 54, No. 9, September 2007.

    Google Scholar 

  7. L. Diambra, A. Capurro, A. Plastino, Neural networks that learn how to detect epileptic spikes, Physics Letters A 241 (1998) 61–66.

    Article  Google Scholar 

  8. C. Lin, L.W. Ko, K.L. Lin, Dep. of ECE and BRC / Computer Center, National Chiao-Tung University / Chung Hua University, Taiwan; and Bor-Chen Kuo, Graduate Institute of Educational Measurement and Statistics, National Taichung University, Taiwan, Classification of driver’s cognitive response using nonparametric single-trial EEG analysis.

    Google Scholar 

  9. S. Walczak, W.J. Nowack, An Artificial Neural Network Approach to Diagnosing Epilepsy Using Lateralized Bursts of Theta EEGs.

    Google Scholar 

  10. W.R.S Webber, R.P. Lesser, R.T. Richardson et al, Hopkins Epilepsy Center and Department of Neurology, Johns Hopkins University School of Medicine, An approach to seizure detection using an artificial neural network (ANN).

    Google Scholar 

  11. M. Palus, Santa Fe Institute, Nonlinear in normal human EEG: Cycles and randomness, not chaos.

    Google Scholar 

  12. X. Li1, X. Guan and R. Du, Dept. of Automation & Computer-Aided Eng., The Chinese University of Hong Kong, Institute of Electrical Engineering, Yanshan University, Using Damping Time for Epileptic Seizures Detection in EEG.

    Google Scholar 

  13. G. Alarcon, C.D. Binnie, R.D.C. Elwes, C.E. Polkey, Institute of Epileptology, EEG Department, The Maudsley Hospital, Denmark Hill, UK, Power spectrum and intracranial EEG patterns at seizure onset in partial epilepsy.

    Google Scholar 

  14. R. Der, U. Steinmetz, Wavelet analysis of EEG signals as a tool for the investigation of the time architecture of cognitive processes.

    Google Scholar 

  15. A. Subasi, E. Ercelebi, Classification of EEG signals using neural network and logistic regression, Computer Methods and Programs in Biomedicine (2005) 78:87–99.

    Article  Google Scholar 

  16. E.M. Tamil, H.M. Radzi, M.Y.I. Idris, Z. Razak, A.M. Tamil, Electroencephalogram (EEG) Brain-Wave Feature Extraction Using Short-Time Fourier Transform.

    Google Scholar 

  17. P. Lapuerta, S. p., Azen, and L. LaBree, Use of neural network in Predicting the risk of coronary artery Disease, Computer in Biomedical Research, vol. 28, no. 1, pp. 38–52, 1995.

    Article  Google Scholar 

  18. L.D. Iasemidis, J.C. Sackellares, Dep of Neurology (LDI, JCS), Neuroscience (JCS), and Electrical Engineering (LDI), University of Florida, Chaos Theory and Epilepsy.

    Google Scholar 

  19. N. Pradhan, P.K. Sadasivan, G.R. Arunodaya, Detection of seizure activity in EEG by an artificial neural network: A preliminary Study, Computers in Biomedical Research, vol.29, no. 4, pp. 244–247, 1994.

    Google Scholar 

  20. J. Torresen, S. Tomita, A review of parallel implementation of backpropagation neural networks.

    Google Scholar 

  21. R. Rojas, The backpropagation Algorithm, Neural Networks, Springer-Verlag, Berlin, 1996

    Google Scholar 

  22. N. Mohamed, D.M. Rubin, T. Marwala, Detection of epileptiform activity in human EEG signals using Bayesian neural networks, Neural Information Processing — Letters and Reviews, Vol. 10, No. 1, January 2006.

    Google Scholar 

  23. V. Schetinin, Polynomial Neural Networks learnt to classify EEG signals, NIMIA-SC2001-2001 NATO Advanced Study Institute on Neural Networks for Instrumentation, Measurement, and Related Industrial Applications: Study Case Crema, Italy, 9–20 October 2001

    Google Scholar 

  24. A. Subasi, Automatic detection of epileptic seizure using dynamic fuzzy neural networks, Expert Systems with Applications 31 (2006) 320–328.

    Article  Google Scholar 

  25. R. Harikumar, B.S. Narayanan, Fuzzy techniques for classification of epilepsy risk level from EEG signals, Department of Electronics and Communication, Amrita Institute of Technology, India.

    Google Scholar 

  26. T.M.E. Nijsen, P.J.M. Cluitmans, P.A.M Griep, R.M. Aarts, Short Time Fourier and Wavelet Transform for accelerometric detection of Myoclonic Seizures, Belgian Day on Biomedical Engineering IEEE/EMBS Benelux Symposium, December 7–8,2006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tamil, E.M., Radzi, H.M., Idris, M.Y.I., Tamil, A.M. (2008). A Review on Feature Extraction & Classification Techniques for Biosignal Processing (Part II: Electroencephalography). In: Abu Osman, N.A., Ibrahim, F., Wan Abas, W.A.B., Abdul Rahman, H.S., Ting, HN. (eds) 4th Kuala Lumpur International Conference on Biomedical Engineering 2008. IFMBE Proceedings, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69139-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69139-6_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69138-9

  • Online ISBN: 978-3-540-69139-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics