Skip to main content

Aggregating Robots Compute: An Adaptive Heuristic for the Euclidean Steiner Tree Problem

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5040))

Abstract

It is becoming state-of-the-art to form large-scale multi-agent systems or artificial swarms showing adaptive behavior by constructing high numbers of cooperating, embodied, mobile agents (robots). For the sake of space- and cost-efficiency such robots are typically miniaturized and equipped with only few sensors and actuators resulting in rather simple devices. In order to overcome these constraints, bio-inspired concepts of self-organization and emergent properties are applied. Thus, accuracy is usually not a trait of such systems, but robustness and fault tolerance are. It turns out that they are applicable to even hard problems and reliably deliver approximated solutions. Based on these principles we present a heuristic for the Euclidean Steiner tree problem which is NP-hard. Basically, it is the problem of connecting objects in a plane efficiently. The proposed system is investigated from two different viewpoints: computationally and behaviorally. While the performance is, as expected, clearly suboptimal but still reasonably well, the system is adaptive and robust.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, S.: NP-complete problems and physical reality. ACM SIGACT News 36(1), 30–52 (2005)

    Article  Google Scholar 

  2. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford Univ. Press, Oxford (1999)

    MATH  Google Scholar 

  3. Chlebík, M., Chlebíková, J.: Approximation hardness of the Steiner Tree problem on graphs. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002. LNCS, vol. 2368, pp. 170–179. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Dorigo, M., Caro, G.D.: Ant Colony Optimization: A new meta-heuristic. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proceedings of the 1999 Congress on Evolutionary Computation (CEC 1999), Piscataway, NJ, pp. 1470–1477. IEEE Press, Los Alamitos (1999)

    Chapter  Google Scholar 

  5. Garey, M.R., Graham, R.L., Johnson, D.S.: Some NP-complete geometric problems. In: Annual ACM Symp. on Theory of Computing, pp. 10–22 (1976)

    Google Scholar 

  6. Hales, T.C.: The honeycomb conjecture. Discrete and Computational Geometry 25(1), 1–22 (2001)

    MATH  MathSciNet  Google Scholar 

  7. Hamann, H.: Modeling and investigation of robot swarms. Master’s thesis, University of Stuttgart, Germany (2006)

    Google Scholar 

  8. Hamann, H., Wörn, H.: Embodied computation. Parallel Processing Letters 17(3), 287–298 (2007)

    Article  Google Scholar 

  9. Hofstadter, D.R.: Gödel, Escher, Bach. Basic Books (1979)

    Google Scholar 

  10. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. North-Holland, Amsterdam (1992)

    MATH  Google Scholar 

  11. Kolb, M., Herrmann, H.J.: The sol-gel transition modelled by irreversible aggregation of clusters. J. Physics A 18(8), L435–L441 (1985)

    Article  Google Scholar 

  12. LaValle, S.M., Kuffner, J.J.: Rapidly-exploring random trees: Progress and prospects. In: Donald, B.R., Lynch, K.M., Rus, D. (eds.) Algorithmic and Computational Robotics, Wellesley, MA, USA, pp. 293–308. A. K. Peters (2001)

    Google Scholar 

  13. Litus, Y., Zebrowski, P., Vaughan, R.: Energy-efficient multi-robot rendezvous: Parallel solutions by embodied approximation. In: Workshop on Algorithmic equivalencies between biological and robotic swarms, Atlanta, USA (June 2007)

    Google Scholar 

  14. Payton, D., Daily, M., Estowski, R., Howard, M., Lee, C.: Pheromone robotics. Autonomous Robots 11(3), 319–324 (2001)

    Article  MATH  Google Scholar 

  15. Robins, G., Zelikovsky, A.: Improved Steiner Tree approximation in graphs. In: 11th ACM-SIAM Symposium on Discrete Algorithms, pp. 770–779 (2000)

    Google Scholar 

  16. Seyfried, J., Szymanski, M., Bender, N., Estaña, R., Thiel, M., Wörn, H.: The I-SWARM project. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics Workshop, pp. 70–83. Springer, Heidelberg (2005)

    Google Scholar 

  17. Tom, J., Witten, A., Sander, L.M.: Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 19, 1400–1403 (1981)

    Google Scholar 

  18. Warme, D., Winter, P., Zachariasen, M.: Geosteiner homepage, http://www.diku.dk/geosteiner/

  19. Zachariasen, M., Winter, P.: Concatenation-based greedy heuristics for the Steiner tree problem in the Euclidean plane. Algorithmica 25, 418–437 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Minoru Asada John C. T. Hallam Jean-Arcady Meyer Jun Tani

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hamann, H., Wörn, H. (2008). Aggregating Robots Compute: An Adaptive Heuristic for the Euclidean Steiner Tree Problem. In: Asada, M., Hallam, J.C.T., Meyer, JA., Tani, J. (eds) From Animals to Animats 10. SAB 2008. Lecture Notes in Computer Science(), vol 5040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69134-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69134-1_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69133-4

  • Online ISBN: 978-3-540-69134-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics