Skip to main content

A Multi-cellular Developmental System in Continuous Space Using Cell Migration

  • Conference paper
From Animals to Animats 10 (SAB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5040))

Included in the following conference series:

Abstract

This paper introduces a novel multi-cellular developmental system where cells are placed in a continuous space. Cells communicate by diffusing and perceiving substances in the environment and are able to migrate around following affinities with substance gradients. The optimization process is performed using Echo State neural networks on the problem of minimizing tile size variations in the context of a tiling problem. Experimental results show that problem complexity only impacts the number of substances used, rather than the number of cells, which implies some sort of scalability with regards to the size of the phenotype. Symmetry breaking and robustness are addressed by adding noise as an intrinsic property of the model. A (positive) side effect is that the resulting model produces very robust solutions with efficient self-healing behavior in the presence of perturbations never met before.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auger, A., Hansen, N.: A restart cma evolution strategy with increasing population size. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2005), pp. 1769–1776 (2005)

    Google Scholar 

  2. Bentley, P., Kumar, S.: Three ways to grow designs: A comparison of embryogenies for an evolutionary design problem. In: Banzhaf, W., et al. (eds.) GECCO 1999, pp. 35–43. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  3. Bongard, J.: Evolving modular genetic regulatory networks. In: Fogel, D.B., et al. (eds.) CEC 2002, pp. 1872–1877. IEEE Press, Los Alamitos (2002)

    Google Scholar 

  4. Bongard, J., Pfeifer, R.: Evolving complete agents using artificial ontogeny. In: Morpho-functional Machines: The New Species (Designing Embodied Intelligence), pp. 237–258. Springer, Heidelberg (2003)

    Google Scholar 

  5. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. IEEE Transactions on Robotics and Automation 20(2), 243–255 (2004)

    Article  Google Scholar 

  6. Devert, A., Bredeche, N., Schoenauer, M.: Robust multi-cellular developmental design. In: Thierens, D., et al. (eds.) GECCO 2007. ACM Press, New York (2007), http://hal.inria.fr/inria-00145336/en/

    Google Scholar 

  7. Devert, A., Bredeche, N., Schoenauer, M.: Unsupervised learning of echo state networks: A case study in artificial embryogeny. In: 8th International Conference on Artificial Evolution (Evolution Artificielle - EA 2007) (2007)

    Google Scholar 

  8. Federici, D., Ziemke, T.: Why are evolved developing organisms also fault-tolerant? In: SAB 2006, pp. 449–460 (2006)

    Google Scholar 

  9. Gordon, T.G.W., Bentley, P.J.: Bias and scalability in evolutionary development. In: GECCO 2005, pp. 83–90. ACM Press, New York (2005)

    Chapter  Google Scholar 

  10. Gruau, F.: Genetic synthesis of modular neural networks. In: ICGA-1993, pp. 318–325. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  11. Hotz, P.E.: Evolving morphologies of simulated 3d organisms based on differential gene expression. In: Husbands, P., Harvey, I. (eds.) ECAL 1997. MIT Press, Cambridge (1997)

    Google Scholar 

  12. Jaeger, H.: Tutorial on training recurrent neural networks. Technical report, GMD Report 159, Fraunhofer Institute AIS (2002)

    Google Scholar 

  13. Miller, J.F.: Evolving a self-repairing, self-regulating, french flag organism. In: GECCO, pp. 129–139 (2004)

    Google Scholar 

  14. Roggen, D., Federici, D.: Multi-cellular development: Is there scalability and robustness to gain? In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 391–400. Springer, Heidelberg (2004)

    Google Scholar 

  15. Schwager, M., McLurkin, J., Rus, D.: Distributed coverage control with sensory feedback for networked robots. In: Proceedings of Robotics: Science and Systems, Philadelphia, USA (August 2006)

    Google Scholar 

  16. Sims, K.: Evolving virtual creatures. In: SIGGRAPH 1994, July 1994, pp. 15–22. ACM Press, New York (1994)

    Chapter  Google Scholar 

  17. Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artificial Life 9(2), 93–130 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Minoru Asada John C. T. Hallam Jean-Arcady Meyer Jun Tani

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bredeche, N. (2008). A Multi-cellular Developmental System in Continuous Space Using Cell Migration. In: Asada, M., Hallam, J.C.T., Meyer, JA., Tani, J. (eds) From Animals to Animats 10. SAB 2008. Lecture Notes in Computer Science(), vol 5040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69134-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69134-1_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69133-4

  • Online ISBN: 978-3-540-69134-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics