Skip to main content

Modeling the Bat LSO Tonotopical Map Refinement during Development

  • Conference paper
  • 1104 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5040))

Abstract

The Lateral Superior Olive (LSO) codes for interaural intensity difference (IID), a cue used for sound localization. Between birth and maturation, the LSO undergoes plasticity driven by input neurons activity. During this developmental phase, a number of inputs are pruned out leading to a refinement of the frequency tuning. The goal of this paper is to show that, using a physiologically plausible network architecture and neuronal model, the activity dependent plasticity of the LSO can be modeled using Spike-Timing Dependent Plasticity (STDP). In particular, we show that the time properties of STDP coupled with the fact that the frequency axis in the LSO can be considered as a delay axis leads to the observed tonotopical map refinement. The response of both the individual neurons as well as population are shown to be in accordance with data taken from physiological analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sanes, D.H., Rubel, E.W.: The ontogeny of inhibition and excitation in the Gerbil Lateral Superior Olive. J. Neurosci. 8(2), 682–700 (1988)

    Google Scholar 

  2. Aytekin, M., Grassi, E., Sahota, M., Moss, C.F.: The bat head-related transfer function reveals binaural cues for sound localization in azimuth and elevation. J. Acoust. Soc. Am. 116(6), 3594–3605 (2004)

    Article  Google Scholar 

  3. Park, T.J., Grothe, B., Pollak, G.D., Schuller, G., Koch, U.: Neural Delays Shape Selectivity to Interaural Intensity Differences in the Lateral Superior Olive. J. Neurosci. 16(20), 6554–6566 (1996)

    Google Scholar 

  4. Kandler, K., Friauf, E.: Development of glycinergic and glutamatergic synaptic transmission in the auditory brainstem of perinatal rats. J. Neurosci. 15(10), 6890–6904 (1995)

    Google Scholar 

  5. Fontaine, B., Peremans, H.: Tuning bat LSO neurons to interaural intensity differences through spike-timing dependent plasticity. Biol. Cyber. 8(3), 332–338 (2007)

    Google Scholar 

  6. Ruggero, M.A., Rich, N.C.: Timing of spike initiation on cochlear afferents: dependence on site of innervation. J. Neurophysiol. 53(8), 379–403 (1987)

    Google Scholar 

  7. Krishna, B.S.: An unified mechanism for spontaneous-rate and first-spike timing in the auditory nerve. J. Comput. Neurosci. 13(2), 71–91 (2002)

    Article  MathSciNet  Google Scholar 

  8. Sumner, C.J., O’Mard, L.P., Lopez-Poveda, E.A., Meddis, R.: A non-linear filter-bank model of the guinea-pig cochlear nerve: Rates responses. J. Acoust. Soc. Am. 113(6), 3264–3274 (2003)

    Article  Google Scholar 

  9. Joris, P.X., Smith, P.H., Yin, T.C.: Enhancement of neural synchronization in the anteroventral cochlear nucleus. II. Responses in the tuning curve tail. J. Neurophysiol. 71(3), 1037–1051 (1994)

    Google Scholar 

  10. Kempter, R., Gerstner, W., van Hemmen, J.L.: Hebbian learning and spiking neurons. Phys. Rev. E 59(4), 4498–4514 (1999)

    Article  MathSciNet  Google Scholar 

  11. Park, T.J., Monsivais, P., Pollak, G.D.: Processing of interaural intensity differences in the LSO: role of interaural threshold differences. J. Neurophysi. 77(6), 2863–2878 (1997)

    Google Scholar 

  12. Olsson, L., Nehaniv, C.L., Polani, D.: Development via Information From Unknown Sensors and Actuators to Actions Grounded in Sensorimotor Perceptions. Connection Science; Special Issue On Developmental Robotics (Bank, D., Meeden, L., guest (eds.)), vol.18(2), pp.121-144 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Minoru Asada John C. T. Hallam Jean-Arcady Meyer Jun Tani

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fontaine, B., Peremans, H. (2008). Modeling the Bat LSO Tonotopical Map Refinement during Development. In: Asada, M., Hallam, J.C.T., Meyer, JA., Tani, J. (eds) From Animals to Animats 10. SAB 2008. Lecture Notes in Computer Science(), vol 5040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69134-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69134-1_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69133-4

  • Online ISBN: 978-3-540-69134-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics