Skip to main content

Evolution of Valence Systems in an Unstable Environment

  • Conference paper
From Animals to Animats 10 (SAB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5040))

Included in the following conference series:

Abstract

We compare the performance of drive- versus perception-based motivational systems in an unstable environment. We investigate the hypothesis that valence systems (systems that evaluate positive and negative nature of events) that are based on internal physiology will have an advantage over systems that are based purely on external sensory input. Results show that inclusion of internal drive levels in valence system input significantly improves performance. Furthermore, a valence system based purely on internal drives outperforms a system that is additionally based on perceptual input. We provide arguments for why this is so and relate our architecture to brain areas involved in animal learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schultz, W., Dayan, P., Montague, P.R.: A neural substrate of prediction and reward. Science 275, 1593–1599 (1997)

    Article  Google Scholar 

  2. Ackley, D.E., Littman, M.E.: Interactions between learning and evolution. In: Langton, C., Taylor, C., Farmer, D., Rasmussen, S. (eds.) Proc. Second Conf. Artificial Life (1991)

    Google Scholar 

  3. Singh, S., Barto, A.G., Chentanez, N.: Intrinsically Motivated Reinforcement Learning. In: Adv. Neural Information Processing Systems, vol. 17. MIT Press, Cambridge (2004)

    Google Scholar 

  4. Schembri, M., Mirolli, M., Baldassarre, G.: Evolving internal reinforcers for an intrinsically motivated reinforcement-learning robot. In: Demiris, Y., Mareschal, D., Scassellati, B., Weng, J. (eds.) Proc. 6th Int. Conf. Development and Learning, pp. E1–6. Imperial College, London (2006)

    Google Scholar 

  5. Damoulas, T., Cos-Aguilera, I., Hayes, G.M., Taylor, T.: Valency for adaptive homeostatic agents: Relating evolution and learning. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 936–945. Springer, Berlin (2005)

    Chapter  Google Scholar 

  6. Snel, M.: Evolving a sense of valency. MSc thesis, School of Informatics, University of Edinburgh (2007)

    Google Scholar 

  7. Cañamero, D.: Modeling motivations and emotions as a basis for intelligent behavior. In: Proc. Int. Conf. Autonomous Agents, pp. 148–155 (1997)

    Google Scholar 

  8. Velásquez, J.: Modeling emotion-based decision making. In: Cañamero, L.D. (ed.) Emotional and intelligent: The tangled of knot of cognition. Papers from the 1998 AAAI Fall Symposium, pp. 164–169. AAAI Press, Menlo Park (1998)

    Google Scholar 

  9. Cos-Aguilera, I., Cañamero, L., Hayes, G.M.: Motivation-driven learning of object affordances: first experiments using a simulated Khepera robot. In: Detjer, F., Dörner, D., Schaub, H. (eds.) The logic of cognitive systems: Proc. Fifth Int. Conf. Cognitive Modeling (ICCM 2003), pp. 57–62 (2003)

    Google Scholar 

  10. Urzelai, J., Floreano, D.: Evolution of adaptive synapses: robots with fast adaptive behavior in new environments. Evolutionary Computation 9(4), 495–524 (2001)

    Article  Google Scholar 

  11. Capi, G., Doya, K.: Evolution of neural architecture fitting environmental dynamics. Adaptive Behavior 13(1), 53–66 (2005)

    Article  Google Scholar 

  12. Barto, A.G., Sutton, R.S., Anderson, C.W.: Neuronlike elements that can solve difficult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics 13, 835–846 (1983)

    Google Scholar 

  13. Ackley, D.E., Littman, M.E.: Generalization and scaling in reinforcement learning. In: Touretzky, D.S. (ed.) Adv. Neural Information Processing Systems, vol. 2. Morgan Kaufmann, San Mateo (1990)

    Google Scholar 

  14. Sutton, R.S.: Learning to predict by the method of temporal differences. Machine Learning 3, 9–44 (1988)

    Google Scholar 

  15. Mayley, G.: Landscapes, learning costs and genetic assimilation. Evolutionary Computation 4(3), 213–234 (1996b)

    Article  Google Scholar 

  16. Anderson, R.W.: Learning and evolution: a quantitative genetics approach. J. Theor. Biol. 175, 89–101 (1995)

    Article  Google Scholar 

  17. Houk, J.C., Adams, J.L., Barto, A.G.: A model of how the basal ganglia generates and uses neural signals that predict reinforcement. In: Houk, J.C., Davis, J.L., Beiser, D.G. (eds.) Models of Information Processing in the Basal Ganglia, pp. 249–274. MIT Press, Cambridge (1995)

    Google Scholar 

  18. Olds, J.: Drives and reinforcements: behavioral studies of hypothalamic functions. Raven Press, New York (1977)

    Google Scholar 

  19. Conover, K.L., Woodside, B., Shizgal, P.: Effects of sodium depletion on competition and summation between rewarding effects of salt and lateral hypothalamic stimulation in the rat. Behav. Neurosci. 108, 549–558 (1994)

    Article  Google Scholar 

  20. Valenstein, E.S., Cox, V.C., Kakolewski, J.W.: Modification of motivated behavior elicited by electrical stimulation of the hypothalamus. Science 157, 552–554 (1968)

    Article  Google Scholar 

  21. Barto, A.G.: Adaptive critics and the basal ganglia. In: Houk, J.C., Davis, J.L., Beiser, D.G. (eds.) Models of Information Processing in the Basal Ganglia, pp. 215–232. MIT Press, Cambridge (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Minoru Asada John C. T. Hallam Jean-Arcady Meyer Jun Tani

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Snel, M., Hayes, G.M. (2008). Evolution of Valence Systems in an Unstable Environment. In: Asada, M., Hallam, J.C.T., Meyer, JA., Tani, J. (eds) From Animals to Animats 10. SAB 2008. Lecture Notes in Computer Science(), vol 5040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69134-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69134-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69133-4

  • Online ISBN: 978-3-540-69134-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics