Skip to main content

Epigenetic Control of Gene Expression

  • Chapter
Genomic Imprinting

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 25))

Abstract

Epigenetics refers to changes in gene expression without change in nucleotide sequence. Genes destined to be silenced should be marked by an epigenetic signal, leading to the establishment of a heritable but potentially reversible inactive conformation of the gene. A large body of experimental data, that has been accumulated in the last two decades or so, clearly indicates that epigenetic control of gene expression in mammals is achieved by DNA methylation combined with chromatin structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antequera F, Macleod D, Bird AP (1989) Specific protection of methylated CpGs in mammalian nuclei. Cell 58: 509–517

    Article  PubMed  CAS  Google Scholar 

  • Archer TK, Lefebre P, Wolford RG, Hager GL (1992) Transcription factor locking on the MMTV promoter: a bimodal mechanism for promoter activation. Science 255: 1573–1576

    Article  PubMed  CAS  Google Scholar 

  • Ball DJ, Gross DS, Garrard WT (1983) 5-methylcytosine is localized in nucleosomes that contain histone H1. Proc Natl Acad Sci USA 80: 5490–5494

    Google Scholar 

  • Benvenisty N, Mencher D, Meyuhas O, Razin A, Reshef L (1985) Methylation of cytosolic PEPCK gene: pattern associated with tissue specificity and development. Proc Natl Acad Sci USA 82: 267–271

    Article  PubMed  CAS  Google Scholar 

  • Bird AP (1986) CpG islands and the function of DNA methylation. Nature 321: 209–213

    Article  PubMed  CAS  Google Scholar 

  • Boyes J, Bird A (1991) DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 64: 1123–1134

    Article  PubMed  CAS  Google Scholar 

  • Boyes J, Bird A (1992) Repression of genes by DNA methylation depends on CpG density and promoter strength: evidence for involvement of a methyl-CpG binding protein. EMBO J 11: 327–333

    PubMed  CAS  Google Scholar 

  • Brandeis M, Kafri T, Ariel M, Chaillet JR, McCarrey J, Razin A, Cedar H (1993) The ontogeny of allele-specific methylation associated with imprinted genes in the mouse. EMBO J 12: 3669–3677

    PubMed  CAS  Google Scholar 

  • Brandeis M, Frank D, Keshet I, Siegfried Z, Mendelsohn M, Nemes A, Temper V, Razin A, Cedar H (1994) Spl elements protect a CpG island from de novo methylation. Nature 371: 435–438

    Article  PubMed  CAS  Google Scholar 

  • Bresnick EH, Bustin M, Marssand V, Richard-Foy H, Hager GL (1992) The transcriptionally-active MMTV promoter is depleted of histone H1. Nucleic Acids Res 20: 273–278

    Article  PubMed  CAS  Google Scholar 

  • Buschhausen G, Wittig B, Graessmann M, Graessmann A (1987) Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene. Proc Natl Acad Sci USA 84: 1177–1181

    Article  PubMed  CAS  Google Scholar 

  • Busslinger M, Hurst J, Flavell RA (1983) DNA methylation and the regulation of globin genes expession. Cell 34: 197–206

    Article  PubMed  CAS  Google Scholar 

  • Chung JH, Whiteley M, Felsenfeld G (1993) A 5’ element of the chicken ß globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 74: 505–514

    Article  PubMed  CAS  Google Scholar 

  • Conklin KF, Groudine M (1984) Chromatin structure and gene expression. In: Razin A, Cedar H, Riggs AD (eds) DNA methylation biochemistry and biological significance. Springer, Berlin Heidelberg New York, pp 293–351

    Chapter  Google Scholar 

  • Cremer T, Kurz A, Zirbel R, Dietzel S, Rinke B, Schrock E, Speicher MR, Mathieu U, Jauch A, Emmerich P, Scherthan H, Ried T, Cremer C, Lichter P (1993) Role of chromosome territories in the functional compartmentalization of the cell nucleus. Cold Spring Harbor Symp Quant Biol 58: 777–792

    Article  PubMed  CAS  Google Scholar 

  • Gruenbaum Y, Cedar H, Razin A (1982) Substrate and sequence specificity of a eukaryotic DNA methylase. Nature 295: 620–622

    Article  PubMed  CAS  Google Scholar 

  • Gruenbaum Y, Szyf M, Cedar H, Razin A (1983) Methylation of replicating and postreplicated mouse L cell DNA. Proc Natl Acad Sci USA 80: 4919–4921

    Article  PubMed  CAS  Google Scholar 

  • Huang L-H, Wang R, Gama-Sosa MA, Shenoy S, Ehrlich M (1984) A protein from human placental nuclei binds preferentially to 5-methylcytosine-rich DNA. J Biol Chem 262: 293–295

    Google Scholar 

  • Johnson CA, Goddard JP, Adams RLP (1995) The effect of histone H1 and DNA methylation on transcription. J Biochem 305: 791–798

    CAS  Google Scholar 

  • Jones PA, Taylor SM, Mohandas T, Shapiro LJ (1982) Cell cycle specific reactivation of an inactive X-chromosome locus by 5azadeoxycytidine. Proc Natl Acad Sci USA 79: 1215–1219

    Article  PubMed  CAS  Google Scholar 

  • Jost J-P, Hofsteenge J (1992) The repressor MDBP-2 is a member of histone H1 family that binds preferentially to methylated DNA in vitro and in vivo. Proc Natl Acad Sci USA 89: 9499–9503

    Article  PubMed  CAS  Google Scholar 

  • Kafri T, Ariel M, Brandeis M, Shemer R, Urven K, McCarrey J, Cedar H, Razin A (1992) Developmental pattern of gene-specific DNA methylation in the mouse embryo and germline. Genes Dev 6: 705–714

    Article  PubMed  CAS  Google Scholar 

  • Kafri T, Gao X, Razin A (1993) Mechanistic aspects of genome-wide demethylation in the preimplantation mouse embryo. Proc Natl Acad Sci USA 90: 10558–10562

    Article  PubMed  CAS  Google Scholar 

  • Kass SU, Landsberger N, Wolffe AP (1997) DNA methylation directs a time-dependent repression of transcription initiation. Curr Biol 7: 157–165

    Article  PubMed  CAS  Google Scholar 

  • Keshet I, Yisraeli J, Cedar H (1985) Effect of regional DNA methylation on gene expression. Proc Natl Acad Sci USA 82: 2560–2564

    Article  PubMed  CAS  Google Scholar 

  • Keshet I, Lieman-Hurwitz I, Cedar H (1986) DNA methylation affects the formation of active chromatin. Cell 44: 535–543

    Article  PubMed  CAS  Google Scholar 

  • Kono T, Obata Y, Yoshimzu T, Nakahara T, Carroll J (1996) Epigenetic modifications during oocyte growth correlates with extended parthenogenetic development in the mouse. Nature Genet 13: 91–94

    Article  PubMed  CAS  Google Scholar 

  • Kruczek I, Doerfler W (1983) Expression of the chloramphenicol acetyltransferase gene in mammalian cells under the control of retinovirus type 12 promoter: effect of promoter methylation on gene expression. Proc Natl Acad Sci USA 80: 7586–7590

    Article  PubMed  CAS  Google Scholar 

  • Latham KE, Doherty AS, Scott CD, Schultz RM (1994) Igfr and Igf gene expression in androgenetic, gynogenetic, and parthenogenetic preimplantation mouse embryos: absence of regulation by genomic imprinting. Genes Dev 8: 290–299

    Article  PubMed  CAS  Google Scholar 

  • Laybourn PJ, Kadonaga JT (1991) Role of nucleosomal cores and histone H1 in regulation of transcription by RNA polymerase II. Science 254: 238–245

    Article  PubMed  CAS  Google Scholar 

  • Leighton PA, Saam JR, Ingram RS, Stewart CL, Tilghman SM (1995) An enhancer deletion affects both H19 and Igf2 expression. Genes Dev 9: 2079–2089

    Article  PubMed  CAS  Google Scholar 

  • Levine A, Cantoni GL, Razin A (1991) Inhibition of promoter activity by methylation: possible involvement of protein mediators. Proc Natl Acad Sci USA 88: 6515–6518

    Article  PubMed  CAS  Google Scholar 

  • Levine A, Cantoni GL, Razin A (1992) Methylation in the preinitiation domain suppresses gene transcription by an indirect mechanism. Proc Natl Acad Sci USA 88: 6515–6518

    Article  Google Scholar 

  • Levine A, Yeivin A, Ben-Asher E, Aloni Y, Razin A (1993) Histone H1-mediated inhibition of transcription initiation of methylated templates in vitro. J Biol Chem 268: 21754–21759

    PubMed  CAS  Google Scholar 

  • Lewis JD, Meehan RR, Henze! WI, Manver-Fogy I, Jeppesen P, Klein F, Bird AP (1992) Purification sequence and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69: 905–914

    Article  PubMed  CAS  Google Scholar 

  • Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366: 362–365

    Article  PubMed  CAS  Google Scholar 

  • Lichtenstein M, Keini G, Cedar H, Bergman Y (1994) B cell-specific demethylation. A novel role for the intronic k chain enhancer sequences. Cell 76: 913–923

    Google Scholar 

  • Macleod D, Charlton J, Mullins I, Bird AP (1994) Spl sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev 8: 2282–2292

    Article  PubMed  CAS  Google Scholar 

  • McArthur M, Thomas JD (1996) A preference of histone H1 for methylated DNA. EMBO J 15: 1705–1714

    PubMed  CAS  Google Scholar 

  • McCarrey JR (1993) Development of the germ cell. In: Desjardinsand C, Ewing LL (eds) The testis: cell and molecular biology of the testis, vol. 5, Chap. 3. Oxford University Press, New York Meehan RR, Lewis JD, McKay S, Kleiner EL, Bird AP (1989) Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell 58: 499–507

    Google Scholar 

  • Meehan RR, Lewis JD, Bird AP (1992) Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Res 20: 5085–5092

    Article  PubMed  CAS  Google Scholar 

  • Monk M, Boubelik M, Lehnert S (1987) Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99: 371–382

    PubMed  CAS  Google Scholar 

  • Nan X, Tate P, Li E, Bird AP (1996) DNA methylation specifies chromosomal localization of MeCP2. Mol Cell Biol 16: 414–421

    PubMed  CAS  Google Scholar 

  • Nan X, Campoy J, Bird AP (1997) MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88: 471–481

    Article  PubMed  CAS  Google Scholar 

  • Paroush Z, Keshet I, Yisraeli I, Cedar H (1990) Dynamics of demethylation and activation of the a actin gene in myoblasts. Cell 63: 1229–1237

    Article  PubMed  CAS  Google Scholar 

  • Patterton D, Wolffe AP (1996) Developmental roles for chromatin and chromsomal structure. Dev Biol 173: 2–13

    Article  PubMed  CAS  Google Scholar 

  • Pennings S, Meersseman G, Bradbury ME (1994) Linker histones HI and H5 prevent the mobility of positioned nucleosomes. Proc Natl Acad Sci USA 91: 10275–10279

    Article  PubMed  CAS  Google Scholar 

  • Perry CA, Allis CD, Annunziato AT (1993) Parental nucleosomes segregated to newly replicated chromatin are underacetylated relative to those assembled de novo. Biochemistry 32: 13615–13623

    Article  PubMed  CAS  Google Scholar 

  • Pina B, Brüggemeier U, Beato M (1990) Nucleosome positioning modulates accessibility of regulatory proteins to the mouse mammary tumor virus promoters. Cell 60: 719–731

    Article  PubMed  CAS  Google Scholar 

  • Pollack Y, Stein R, Razin A, Cedar H (1980) Methylation of foreign DNA sequences in eukaryotic cell. Proc Natl Acad Sci USA 77: 6463–6467

    Article  PubMed  CAS  Google Scholar 

  • Razin A (1998) CpG methylation, chromatins structure and gene silencing a three-way connection. EMBO J 17: 4905–4908

    Article  PubMed  CAS  Google Scholar 

  • Razin A, Cedar H (1977) Distribution of 5methylcytosine in chromatin. Proc Natl Acad Sci USA 74: 2725–2728

    Article  PubMed  CAS  Google Scholar 

  • Razin A, Cedar H (1994) DNA methylation and genomic imprinting. Cell 77: 473–476

    Article  PubMed  CAS  Google Scholar 

  • Razin A, Kafri T (1994) DNA methylation from embryo to adult. Prog Nucleic Acids Res Mol Biol 48: 53–81

    Article  CAS  Google Scholar 

  • Razin A, Szyf M, Kafri T, Roll M, Giloh H, Scarpa S, Carotti D, Cantoni GL (1986) Replacement of 5 methylcytosine by cytosine: a possible mechanism for transient demethylation during differentiation. Proc Natl Acad Sci USA 83: 2827–2831

    Article  PubMed  CAS  Google Scholar 

  • Riggs AD, Pfeifer GP (1992) X-chromosome inactivation and cell memory. Trends Genet 8: 169–174

    PubMed  CAS  Google Scholar 

  • Schaffer CD, Wallrath LL, Elgin SCR (1993) Regulating genes by packaging domains: bits of heterochromatin in euchromatin. Trends Genet 9: 35–38

    Article  Google Scholar 

  • Schlossher J, Egert H, Paro R, Cremer S (1994) Gene inactivation in Drosophila mediated by the polycomb gene product or by position-effect variegation does not involve major changes in the chromatin fibre. Mol Gen Genet 243: 453–462

    Google Scholar 

  • Shemer R, Razin A (1996) Establishment of imprinted methylation patterns during development. In: Russo VEA, Martienssen RA, Riggs AD (eds) Epigenetic mechanisms of gene regulation. CSHL Press, New York, USA pp 215–229

    Google Scholar 

  • Shemer R, Eisenberg S, Breslow JL, Razin A (1991) Methylation patterns of the human ApoAICIII-AIV gene cluster in adult and embryonic tissue suggest dynamic changes in methylation during development. J Biol Chem 266: 23676–23681

    PubMed  CAS  Google Scholar 

  • Shemer R, Birger Y, Dean WL, Reik W, Riggs AD, Razin A (1996) Dynamic methylation adjustment and counting as part of imprinting mechanisms. Proc Natl Acad Sci USA 93: 6371–6376

    Article  PubMed  CAS  Google Scholar 

  • Shemer R, Birger Y, Riggs AD, Razin A (1997) A Structure of the imprinted mouse Snrpn gene and establishment of its parental-specific methylation pattern. Proc Natl Acad Sci USA 94: 10267–10272

    Article  PubMed  CAS  Google Scholar 

  • Sinsheimer RL (1955) The action of pancreatic deoxyribonuclease II. Isometric dinucleotides. J Biol Chem 215: 579–583

    PubMed  CAS  Google Scholar 

  • Smith HO, Kelly SV (1994) Methylases of the type II restriction modification systems in DNA methylation. In: Razin A, Cedar H, Riggs AD (eds) Biochemistry and biological significance. Springer, Berlin Heidelberg New York, pp 66–71

    Google Scholar 

  • Sogo LR (1995) Replication of transcriptionally active chromatin. Nature 374: 276–280

    Article  PubMed  Google Scholar 

  • Stein R, Razin A, Cedar H (1982) In vitro methylation of the hamster adenine phosphoribosyltransferase gene inhibits its expression in mouse L-cells. Proc Natl Acad Sci USA 79: 3418–3422

    Article  PubMed  CAS  Google Scholar 

  • Stoger R, Kubicka P, Liu C-G, Kafri T, Razin A, Cedar H, Barlow DP (1993) Maternal-specific methylation of the imprinted mouse Igf2/M6pr locus identifies the expressed locus as carrying the imprinting signal. Cell 73: 61–71

    Article  PubMed  CAS  Google Scholar 

  • Szabo PE, Mann R) (1995a) Biallelic expression of imprinted genes in the mouse germ line: implications for erasure, establishment, and mechanisms of genomic imprinting. Genes Dev 9: 1857–1868

    Article  PubMed  CAS  Google Scholar 

  • Szabo PE, Mann RJ (1995b) Allele-specific expression and total expression levels of imprinted genes during early mouse development: implications for imprinting mechanisms. Genes Dev 9: 1–12

    Article  Google Scholar 

  • Tada M, Tada T, Lefebvre L, Barton SC, Surani MA (1997) Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J 16: 6510–6520

    Article  PubMed  CAS  Google Scholar 

  • Tate P, Bird AP (1993) Effects of DNA methylation on DNA binding proteins and gene expression. Curr Opin Genet Dev 3: 226–231

    Article  PubMed  CAS  Google Scholar 

  • Tate P, Skarnes W, Bird AP (1996) The methyl-CpG binding protein, MeCP2 is essential for embryonic development in the mouse. Nat Genet 12: 205–208

    Article  PubMed  CAS  Google Scholar 

  • Tazi J, Bird A (1990) Alternative chromatin structure at CpG islands. Cell 60: 909–920

    Article  PubMed  CAS  Google Scholar 

  • Thomas F, Koller T, Klug A (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructure of chromatin. J Cell Biol 83: 403–427

    Article  Google Scholar 

  • Tucker KL, Beard C, Dansman J, Jackson-Grusby L, Laird PW, Lei H, Li E, Jaenisch R (1996) Germline passage is required for establishment of methylation and expression patterns of imprinted but not nonimprinted genes. Genes Dev 10: 1008–1020

    Article  PubMed  CAS  Google Scholar 

  • Urieli-Shoval S, Gruenbaum Y, Sedat J, Razin A (1982) The absence of detectable methylated bases in Drosophila melanogaster DNA. FEBS Lett 146: 148–152

    Article  PubMed  CAS  Google Scholar 

  • Vardimon L, Kressman A, Cedar H, Maechler M, Doerfler W (1982) Expression of a cloned adenovirus gene is inhibited by in vitro methylation. Proc Natl Acad Sci USA 79: 1073–1077

    Article  PubMed  CAS  Google Scholar 

  • Wang R-H, Zhang X-Y, Khan R, Zhou Y, Huang L-H, Ehrlich M (1986) Methylated DNA binding protein from human placenta recognizes specific methylated sites on several prokaryote DNAs. Nucleic Acids Res 14: 9843–9860

    Article  PubMed  CAS  Google Scholar 

  • Watt F, Molloy PL (1988) Cytosine methylation prevents binding to DNA of a Hela cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev 2: 1136–1143

    Article  PubMed  CAS  Google Scholar 

  • Weiss A, Keshet I, Razin A, Cedar H (1996) DNA demethylation in vitro: involvement of RNA. Cell 86: 709–718

    Article  PubMed  CAS  Google Scholar 

  • Wiekowski M, Miranda M, DePamphilis ML (1993) Requirements for promoter activity in mouse oocytes and embyros distinguish paternal pronuclei from maternal and zygotic nuclei. Dev Biol 159: 366–378

    Article  PubMed  Google Scholar 

  • Wigler M, Levy D, Perucho M (1981) The somatic replication of DNA methylation. Cell 24: 33–40

    Article  PubMed  CAS  Google Scholar 

  • Wolffe AP (1994) Transcription: in tune with the histones. Cell 77: 13–16

    Article  PubMed  CAS  Google Scholar 

  • Wutz A, Smrzka OW, Schweifer N, Schellander K, Wagner EF, Barlow DP (1997) Imprinted expression of the Igfr gene depends on an intronic CpG island. Nature 389: 745–749

    Article  PubMed  CAS  Google Scholar 

  • Yeivin A, Razin A (1993) Gene methylation patterns and expression in DNA methylation. In: Jost JP, Salug HP (eds) Molecular biology and biological significance, Birkhäuser, Basel, pp 523–568

    Google Scholar 

  • Yisraeli J, Frank D, Razin A, Cedar H (1988) Effect of in vitro DNA methylation on globin gene expression. Proc Natl Acad Sci USA 85: 4638–4642

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Razin, A., Shemer, R. (1999). Epigenetic Control of Gene Expression. In: Ohlsson, R. (eds) Genomic Imprinting. Results and Problems in Cell Differentiation, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69111-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69111-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21956-0

  • Online ISBN: 978-3-540-69111-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics