Skip to main content

Mechanisms of Transcriptional Regulation

  • Chapter
Genomic Imprinting

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 25))

Abstract

The phenomenon of genomic imprinting, whatever its biological functions and evolutionary origins may be, ultimately manifests itself in the monoallelic expression of certain genes. The assumption has been, therefore, that the transcriptional regulatory systems of imprinted genes would directly or indirectly represent the principal focus of the imprinting process. As this chapter will discuss, however, our perceptions of gene regulation mechanisms are currently undergoing a radical re-evaluation and some of the emerging concepts may prove to be of importance to our understanding of how genomic imprinting functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartolomei MM, Webber AL, Brunkow ME, Tilghman SM (1993) Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev 7: 1663–1673

    Article  PubMed  CAS  Google Scholar 

  • Buratowski S (1994) The basics of basal transcription by RNA polymerase II. Cell 77: 1–3

    Article  PubMed  CAS  Google Scholar 

  • Choy B, Green MR (1993) Eukaryotic activators function during multiple steps of preinitiation complex assembly. Nature 366: 531–536

    Article  PubMed  CAS  Google Scholar 

  • Colgan J, Manley JL (1992) TFIID can be rate limiting in vivo for TATA-containing, but not TATA-lacking, RNA polymerase II promoters. Genes Dev 6: 304–315

    Google Scholar 

  • Cook PR (1997) The transcriptional basis of chromosome pairing. J Cell Sci 110: 1033–1040

    PubMed  CAS  Google Scholar 

  • Davie JR, Hendzel MJ (1994) Multiple functions of dynamic histone acetylation. J Cell Biochem 55: 98–105

    Article  PubMed  CAS  Google Scholar 

  • Dernburg AF, Broman KW, Fung JC, Marshall WF, Philips J, Agard DA, Sedat JW (1996) Perturbation of nuclear architecture by long-distance chromosome interactions. Cell 85: 745–759

    Article  PubMed  CAS  Google Scholar 

  • Dillon N, Trimborn T, Strouboulis J, Fraser P, Grosveld F (1997) The effect of distance on longrange chromatin interactions. Mol Cell 1: 131–139

    Article  PubMed  CAS  Google Scholar 

  • Eick D, Wedel A, Heumann H (1994) From initiation to elongation: comparison of transcription by prokaryotic and eukaryotic RNA polymerases. TIG 10: 292–296

    Article  PubMed  CAS  Google Scholar 

  • Ekstrom TJ, Cui H, Li X, Ohlsson R (1995) Promoter-specific IGF2 imprinting status and its plasticity during human liver development. Development 121: 309–316

    PubMed  CAS  Google Scholar 

  • Franklin G, Donovan M, Adam G, Holmgren L, Pfeifer-Ohlsson S, Ohlsson R (1991) Expression of the human PDGF-B gene is regulated by both positively and negatively acting cell type-specific regulatory elements located in the first intron. EMBO J 10: 1365–1373

    PubMed  CAS  Google Scholar 

  • Franklin GC, Adam GIR, Miller SJ, Moncrieff CL, Ullerâs E, Ohlsson R (1995) An Inr-containing sequence flanking the TATA box of the human c-sis (PDGF-B) proto-oncogene promoter functions in cis as a co-activator for its intronic enhancer. Oncogene 11: 1873–1884

    PubMed  CAS  Google Scholar 

  • Gaston K, Duhig T, Armes N, Colombo P, Fried M (1995) Surfs: a gene in the tightly clustered mouse surfeit locus is highly conserved and transcribed divergently from the rpL7A (Surf3) gene. Genomics 30: 163–170

    Article  Google Scholar 

  • Goodrich JA, Tijan R (1994) Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II. Cell 77: 145–156

    Article  PubMed  CAS  Google Scholar 

  • Goping IS, Lamontagne S, Shore GC, Nguyen M (1995) A gene-type-specific enhancer regulates the carbamyl phosphate synthetase I promoter by cooperating with the proximal GAG activating element. Nucleic Acids Res 23: 1717–1721

    Article  PubMed  CAS  Google Scholar 

  • Halle JP, Meisterernst M (1996) Gene expression: increasing evidence for a transcriptosome. Trends Genet 12: 161–163

    Article  PubMed  CAS  Google Scholar 

  • He LM, Cui HM, Walsh C, Mattsson R, Lin W, Anneren G, Pfeifer-Ohlsson S, Ohlsson R (1998) Hypervariable allelic expression patterns of the imprinted IGF2 gene in tumor cells. Oncogene 16: 113–119

    Article  PubMed  CAS  Google Scholar 

  • Huntriss J, Lorenzi R, Purewal A, Monk M (1997) A methylation-dependent DNA-binding activity recognising the methylated promoter region of the mouse Xist gene. Biochem Biophys Res Commun 235: 730–738

    Article  PubMed  CAS  Google Scholar 

  • Jackson DA, Hassan AB, Errington RJ, Cook PR (1993) Visualization of focal sites of transcription within human nuclei. EMBO J 12: 1059–1065

    PubMed  CAS  Google Scholar 

  • Kaiser K, Meisterernst M (1996) The human general co-factors. Trends Biochem Sci 21: 342–345

    PubMed  CAS  Google Scholar 

  • Kass SU, Landsberger N, Wolffe AP (1997) DNA methylation directs a time-dependent repression of transcription initiation. Curr Biol 7: 157–165

    Article  PubMed  CAS  Google Scholar 

  • Kermekchiev M, Pettersson M, Matthias P, Schaffner W (1991) Every enhancer works with every promoter for all the combinations tested: could new regulatory pathways evolve by enhancer shuffling? Gene Expr 1: 71–81

    PubMed  CAS  Google Scholar 

  • Koleske AJ, Young RA (1994) An RNA polymerase II holoenzyme responsive to activators. Nature 368: 466–469

    Article  PubMed  CAS  Google Scholar 

  • Krumm A, Meulia T, Groudine M (1993) Common mechanisms for the control of eukaryotic transcriptional elongation. Bio Essays 15: 659–665

    CAS  Google Scholar 

  • LaSalle JM, Lalande M (1996) Homologous association of oppositely imprinted chromosomal domains. Science 272: 725–728

    Article  PubMed  CAS  Google Scholar 

  • Majumder S, DePamphilis ML (1994) TATA-dependent enhancer stimulation of promoter activity in mice is developmentally acquired. Mol Cell Biol 14: 4258–4268

    PubMed  CAS  Google Scholar 

  • Majumder S, DePamphilis ML (1995) A unique role for enhancers is revealed during early mouse development. Bio Essay 17: 879–889

    CAS  Google Scholar 

  • Majumder S, Zhao Z, Kaneko K, DePamphilis ML (1997) Developmental acquisition of enhancer function requires a unique coactivator activity. EMBO J 16: 1721–1731

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Goodbourn S, Fischer JA (1987) Regulation of inducible and tissue-specific gene expression. Science 236: 1237–1245

    Article  PubMed  CAS  Google Scholar 

  • Marshall WF, Dernburg AF, Harmon B, Agard DA, Sedat JW (1996) Specific interactions of chromatin with the nuclear envelope: positional determination within the nucleus in Drosophila melanogaster. Mol Biol Cell 7: 825–842

    PubMed  CAS  Google Scholar 

  • Marshall WF, Fung JC, Sedat JW (1997) Deconstructing the nucleus: global architecture from local interactions. Curr Opin Genet Dev 7: 259–263

    Article  PubMed  CAS  Google Scholar 

  • Martin DIK, Fiering S, Groudine M (1996) Regulation of -globin gene expression: straightning out the locus. Curr Opin Genet Dev 6: 488–495

    Article  PubMed  CAS  Google Scholar 

  • Merli C, Bergstrom DE, Cygan JA, Blackman RK (1996) Promoter specificity mediates the independent regulation of neighbouring genes. Genes Dev 10: 1260–1270

    Article  PubMed  CAS  Google Scholar 

  • Moore T, Haig D (1991) Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet 7: 45–49

    PubMed  CAS  Google Scholar 

  • Ohlsson R, Franklin G (1995) Normal development and neoplasia: the imprinting connection. Int J Dev Biol 39: 869–876

    PubMed  CAS  Google Scholar 

  • Orphanides G, LeRoy G, Chang CH, Luse DS, Reinberg D (1998) FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92: 105–116

    Article  PubMed  CAS  Google Scholar 

  • Ossipow V, Tassan JP, Nigg EA, Schibler U (1995) A mammalian RNA polymerase II holoenzyme containing all components required for promoter-specific transcription initiation. Cell 83: 137–146

    Article  PubMed  CAS  Google Scholar 

  • Panning B, Dausman J, Jaenisch R (1997) X chromosome inactivation is mediated by Xist RNA stabilization. Cell 90: 907–916

    Article  PubMed  CAS  Google Scholar 

  • Parvin JD, McCormack RJ, Sharp PJ, Fisher DE (1995) Pre-bending of a promoter sequence enhances affinity for the TATA-binding factor. Nature 373: 724–727

    Article  PubMed  CAS  Google Scholar 

  • Pazin MJ, Kamakaka RT, Kadonaga JT (1994) ATP-dependent nucleosome reconfiguration and transcriptional activation from preassembled chromatin templates. Science 266: 2007–2011

    Article  PubMed  CAS  Google Scholar 

  • Peterson CL (1996) Multiple SWItches to turn on chromatin? Curr Opin Genet Dev 6: 171–175

    Article  PubMed  CAS  Google Scholar 

  • Ranish JA, Hahn S (1996) Transcription: basal factors and activation. Curr Opin Genet Dev 6: 151–158

    Article  PubMed  CAS  Google Scholar 

  • Reith W, Ucla C, Barras E, Gaud A, Durand B, Herrero Sanchez C, Kobr M, Mach B (1994) RFX1, a transactivator of hepatitis B virus enhancer I, belongs to a novel family of homodimeric and heterodimeric DNA-binding proteins. Mol Cell Biol 14: 1230–1244

    PubMed  CAS  Google Scholar 

  • Roberts SGE, Ha I, Maldonado E, Reinberg D, Green MR (1993) Interaction between an acidic activator and transcription factor TFIIB is required for transcriptional activation. Nature 363: 741–744

    Article  PubMed  CAS  Google Scholar 

  • Roeder RG (1996) The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem Sci 21: 327–335

    PubMed  CAS  Google Scholar 

  • Rountree MR, Selker EU (1997) DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa. Genes Dev 11: 2383–95

    Article  PubMed  CAS  Google Scholar 

  • Schlossherr J, Eggert H, Paro R, Cremer S, Jack RS (1994) Gene inactivation in Drosophila mediated by the Polycomb gene product or by position-effect variegation does not involve major changes in the accessibility of the chromatin fibre. Mol Gen Genet 243: 453–62

    PubMed  CAS  Google Scholar 

  • Schmidt EE, Schibler U (1995) High accumulation of components of the RNA polymerase II transcription machinery in rodent spermatids. Development 121: 2373–2383

    PubMed  CAS  Google Scholar 

  • Selker EU (1990) DNA methylation and chromatin structure: a view from below. TIBS 15: 103–107

    PubMed  CAS  Google Scholar 

  • Sheardown SA, Duthie SM, Johnston CM, Newall AE, Formstone EJ, Arkell RM, Nesterova TB, Alghisi GC, Rastan S, Brockdorff N (1997) Stabilization of Xist RNA mediates initiation of X chromosome inactivation. Cell 91: 99–107

    Article  PubMed  CAS  Google Scholar 

  • Singer RH, Green MR (1997) Comparmentilization of eukaryotic gene expression: Causes and effects. Cell 91: 291–294

    Google Scholar 

  • Stargell LA, Struhl K (1996) Mechanisms of transcriptional activation in vivo: two steps forward. Trends Genet 12: 311–315

    Article  PubMed  CAS  Google Scholar 

  • Svejstrup JQ, Vichi P, Egly JM (1996) The mutiple roles of transcription/repair factor TFIIH. Trends Biochem Sci 21: 346–350

    PubMed  CAS  Google Scholar 

  • Tsukiyama T, Wu C (1995) Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell 83: 1011–1020

    Article  PubMed  CAS  Google Scholar 

  • Venter U, Svaren J, Schmitz J, Schmid A, Hörz W (1994) A nucleosome precludes binding of the transcription factor Pho4 in vivo to a critical target site in the PHO5 promoter. EMBO J 13: 4848–4855

    PubMed  CAS  Google Scholar 

  • Wang Y, Jensen RC, Stumph WE (1996) Role of TATA box sequence and orientation in determining RNA polymeraselI/III transcription specificity. Nucleic Acids Res 15: 3100–3106

    Article  Google Scholar 

  • Webber AL, Ingram RS, Levorse JM, Tilghman SM (1998) Location of enhancers is essential for the imprinting of H19 and Igf2 genes. Nature 391: 711–715

    Article  PubMed  CAS  Google Scholar 

  • Wilson CJ, Chao DM, Imbalzano AN, Schnitzler GR, Kingston RE, Young RA (1996) RNA polymerase II holoenzyme contains SWI/SNF regulators involved in chromatin remodeling. Cell 84: 235–244

    Article  PubMed  CAS  Google Scholar 

  • Yoo-Warren H, Pachnis V, Ingram R, Tilghman S (1988) Two regulatory domains flank the mouse H19 gene. Mol Cell Biol 8: 4707–4715

    PubMed  CAS  Google Scholar 

  • Yu J, Bock JH, Slightom JL, Villeponteau B (1994) A 5’ beta-globin matrix-attachment region and the polyoma enhancer together confer position-independent transcription. Gene 139: 139–145

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Franklin, G.C. (1999). Mechanisms of Transcriptional Regulation. In: Ohlsson, R. (eds) Genomic Imprinting. Results and Problems in Cell Differentiation, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69111-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69111-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21956-0

  • Online ISBN: 978-3-540-69111-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics