Skip to main content

Genomic Imprinting in Plants

  • Chapter

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 25))

Abstract

Epigenetic programming is most likely the least understood part of the control of gene expression and too broad a subject to consider in a single chapter. The difficulty in studying its role in gene expression is that very few Mendelian mutations cause arrest in epigenetic programming and that chromatin changes occurring many cell divisions before transcription starts are difficult to monitor by biochemical means (Lund et al. 1995a). Given this complexity, we shall focus here on one example of epigenetic programming that has already been genetically exploited: parental genomic imprinting. One of the major advantages of studying plant versus animal development is based on the generation of alleles of genes affected in epigenetic programming so that biochemical methods can be applied by comparing tissues of different genetic origin. Here, we consider allelic variations and mutations that specifically focus on epigenetic programming at the gamete level.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barton SC, Surani MAH, Norris ML (1984) Role of paternal and maternal genomes in mouse development. Nature 311: 374–376

    Article  PubMed  CAS  Google Scholar 

  • Birchler JA (1993) Dosage analysis of maize endosperm development. Annu Rev Genet 27: 181204

    Google Scholar 

  • Birchler JA, Hart JR (1987) Interaction of endosperm size factors in maize. Genetics 117: 309–317

    PubMed  CAS  Google Scholar 

  • Brink RA, Kermicle JL, Ziebur NK (1970) R expression in maize endosperm, embryos, and seedlings. Genetics 66: 87–96

    Google Scholar 

  • Cassidy SB (1995) Uniparental diosomy and genomic imprinting as causes of human genetic disease. Environ Mol Mutagen 25 Suppl 26: 13–20

    Article  Google Scholar 

  • Chaudhuri S, Messing J (1994) Allele-specific parental imprinting of dzr-1, a posttranscriptional regulator of zein accumulation. Proc Natl Acad Sci USA 91: 4867–4871

    Article  PubMed  CAS  Google Scholar 

  • Chomet P (1988) Characterization of stable and metastable changes of the maize transposable element, Activator. Thesis. State University of New York at Stony Brook.

    Google Scholar 

  • Dumas C, Mogensen HL (1993) Gametes and fertilizaton: maize as a model system for experimental embryogenesis in flowering plants. Plant Cell 5: 1337–1348

    PubMed  Google Scholar 

  • Fedoroff NV (1996) Epigenetic regulation of the maize Spm transposable element. In: Russo VEA, Martienssen RA, Riggs AD (eds) Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 575–592

    Google Scholar 

  • Fedoroff NV, Banks JA (1988) Is the suppressor-mutator element controlled by a basic developmental regulatory mechanism? Genetics 120: 559–577

    PubMed  CAS  Google Scholar 

  • Feinberg A (1993) Genomic imprinting and gene activation in cancer. Nat Genet 4: 110–113

    Article  PubMed  CAS  Google Scholar 

  • Grossniklaus U, Schneitz K (1998) The molecular and genetic basis of ovule and megagametophyte development. Semin Cell Dev Biol 9: 227–238

    Article  PubMed  CAS  Google Scholar 

  • Grossniklaus U, Vielle-Calzada J-P, Hoeppner M, Gagliano WB (1998) Maternal control of embryogenesis by MEDEA, a Polycomb-group gene in Arabidopsis. Science 280: 446–450

    Article  PubMed  CAS  Google Scholar 

  • Haig D, Graham C (1991) Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell 64: 1045–1046

    Article  PubMed  CAS  Google Scholar 

  • Haig D, Westoby M (1989) Parent specific gene expression and the triploid endosperm. Am Nat 134: 147–155

    Article  Google Scholar 

  • Haig D, Westoby M (1991) Genomic imprinting in endosperm: its effect on seed development in crosses between species, and between different ploidies of the same species, and its implications for the evolution of apomixis. Philos Trans R Soc Lond 333: 1–13

    Article  Google Scholar 

  • Hollick JB, Dorweiler, JE, Chandler VL (1997) Paramutation and related allelic interactions. Trends Genet 13: 302–308

    Article  PubMed  CAS  Google Scholar 

  • Jänisch R (1997) DNA methylation and imprinting: why bother? Trends Genet 13: 323–329

    Article  Google Scholar 

  • John RM, Surani MA (1996) Imprinted genes and regulation of gene expression by epigenetic inheritance. Curr Opin Cell Biol 8: 348–353

    Article  PubMed  CAS  Google Scholar 

  • Johnston SA, den Nijs TPM, Peloquin SJ, Hanneman RE, Jr (1980) The significance of genic balance to endosperm development in interspecific crosses. Theor Appl Genet 57: 5–9

    Google Scholar 

  • Johri BM, Ambegaokar KB, Srivastava PS (1992) Comparative embryology of angiosperms, vols 1, 2. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Kermicle JL (1969) Androgenesis conditioned by a mutation in maize. Science 166: 1422–1424

    Article  PubMed  CAS  Google Scholar 

  • Kermicle JL (1970) Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics 66: 69–85

    PubMed  CAS  Google Scholar 

  • Kermicle JL (1978) Imprinting of gene action in maize endosperm. In: Walden DB (ed) Maize breeding and genetics. Wiley, New York, pp 357–371

    Google Scholar 

  • Kermicle JL (1995) Location, time of action, and dominance relations of an imprintor gene of R-mottled in maize. In: Oono K, Takaiwa F (eds) Modification of Gene Expression and non-

    Google Scholar 

  • Mendelian Inheritance. National Institute of Agrobiological Resources, Tokio, pp 119–134

    Google Scholar 

  • Kermicle JL (1996) Epigenetic silencing and activation of a maize r gene. In: Russo VEA

    Google Scholar 

  • Martienssen RA, Riggs AD (eds) Epigenetic Mechanisms of Gene Regulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 267–287

    Google Scholar 

  • Kermicle JL, Alleman M (1990) Genetic imprinting in maize in relation to the angiosperm life cycle. Development Suppl 1: 9–14

    Google Scholar 

  • Kiesselbach TA (1949) The structure and reproduction of corn. Univ Nebraska Agri Exp Sta Res Bull 161: 1–96

    Google Scholar 

  • Kimber G, Riley R (1963) Haploid angiosperms. Bot Rev 29: 480–531

    Article  Google Scholar 

  • Koornneef M (1994) Arabidopsis genetics. In: Meyerowitz EM, Somerville CR (eds) Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 89–120

    Google Scholar 

  • Lin B-Y (1982) Association of endosperm reduction with parental imprinting in maize. Genetics 100: 475–486

    PubMed  CAS  Google Scholar 

  • Lin B-Y (1984) Ploidy barrier to endosperm development in maize. Genetics 107: 103–115

    PubMed  CAS  Google Scholar 

  • Lopes MA, Larkins BA (1993) Endosperm origins, development and function. Plant Cell 5: 1383–1399

    PubMed  CAS  Google Scholar 

  • Lund G, Das OP, Messing J (1995a) Tissue-specific DNase I-sensitive sites of the maize P gene and their changes upon epimutation. Plant J 7: 797–807

    Article  CAS  Google Scholar 

  • Lund G, Ciceri P, Viotti A (1995b) Maternal-specific demethylation and expression of specific alleles of zein genes in the development of Zea mays L. Plant J 8: 571–581

    Article  PubMed  CAS  Google Scholar 

  • Lund G, Messing J, Viotti A (1995c) Endosperm-specific demethylation and activation of specific alleles of a-tubulin genes of Zea mays L. Mol Gen Genet 246: 716–722

    Article  PubMed  CAS  Google Scholar 

  • Maheswari P (1950) An introduction to the embryology of angiosperms. McGraw-Hill, New York Matzke MA, Matzke AJM (1998) Epigenetic silencing of plant transgenes as a consequence of diverse cellular defense responses. Cell Mol Life Sci 54: 94–103

    Article  Google Scholar 

  • McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37: 179–183

    Article  PubMed  CAS  Google Scholar 

  • Meinke DW (1994) Seed development in Arabidopsis thaliana. In: Meyerowitz EM, Somerville CR (eds) Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 253–295

    Google Scholar 

  • Messing J (1989) Broadening our understanding of genetic information: beyond base pairing. ASM News 55: 255–258

    Google Scholar 

  • Messing J, Fisher H (1991) Maternal effect on high methionine levels in hybrid corn. J Biotechnol 21: 229–238

    Article  CAS  Google Scholar 

  • Moore T, Haig D (1991) Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet 7: 45–49

    PubMed  CAS  Google Scholar 

  • Murray DM (1988) Nutrition of the angiosperm embryo. Research Studies Press, Somerset, UK Neumann B, Barlow DP (1996) Multiple roles for DNA methylation in gametic imprinting. Curr Opin Genet Dev 6: 159–163

    Google Scholar 

  • Nishiyama I, Yabuno T (1978) Causal relationships between the polar nuclei in double fertilization and interspecific cross-incompatibility in Avena. Cytologia (Tokyo) 43: 453–466

    Article  Google Scholar 

  • Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin Heidelberg New York, pp 475–518

    Chapter  Google Scholar 

  • Que Q, Jorgensen RA (1998) Homology-based control of gene expression patterns in transgenic petunia flowers. Dev Genet 22: 100–109

    Article  PubMed  CAS  Google Scholar 

  • Reik W, Feil R, Allen ND, Moore T, Walter J (1995) Imprinted genes, allelic methylation, and imprinted modifier genes of methylation. In: Ohlsen R, Ritzen M (eds) Genomic imprinting–causes and consequences. Cambridge University Press, Cambridge, pp 157–170

    Google Scholar 

  • Reik, W (1996) The Wellcome prize lecture. Genetic imprinting: the battle of the sexes rages on. Exp Physiol 81: 161–172

    PubMed  CAS  Google Scholar 

  • Reik W, Maher ER (1997) Imprinting in clusters: lessons from Beckwith-Wiedeman syndrome. Trends Genet 13: 330–334

    Article  PubMed  CAS  Google Scholar 

  • Russel SD (1993) The egg cell: Development and role in fertilization and early embryogenesis. Plant Cell 5: 1349–1359

    Google Scholar 

  • Sarkar KR, Coe EH, Jr (1966) A genetic analysis of the origin of maternal haploids in maize. Genetics 54: 453–464

    PubMed  CAS  Google Scholar 

  • Schläppi M, Raina R, Fedoroff N (1994) Epigenetic regulation of the maize Spm transposable element: novel activation of a methylated promoter by TnpA. Cell 77: 427–437.

    Article  PubMed  Google Scholar 

  • Schwartz D (1982) Tissue-specific regulation of gene function: presetting and erasure. Proc Nati Acad Sci USA 79: 5991–5992

    Article  CAS  Google Scholar 

  • Spena A, Viotti A, Pirrotta V (1983) Two adjacent genomic zein sequences: structure, organization, and tissue-specific restriction pattern. J Mol Biol 169: 799–811

    Article  PubMed  CAS  Google Scholar 

  • Surani MAH, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308: 548–550

    Article  PubMed  CAS  Google Scholar 

  • Walbot V (1996) Sources and consequences of phenotypic and genotypic plasticity in flowering plants. Trends Plant Sci 1: 27–32

    Article  Google Scholar 

  • Yeung EC, Meinke DW (1993) Embryogenesis in angiosperms: development of the suspensor. Plant Cell 5: 1371–1381

    PubMed  Google Scholar 

  • Zhang D, Ehrlich KC, Supakar PC, Ehrlich M (1989) A plant DNA-binding protein that recognizes 5-methylcytosine residues. Mol Cell Biol 9: 1351–1356

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Messing, J., Grossniklaus, U. (1999). Genomic Imprinting in Plants. In: Ohlsson, R. (eds) Genomic Imprinting. Results and Problems in Cell Differentiation, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69111-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69111-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21956-0

  • Online ISBN: 978-3-540-69111-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics