Skip to main content

Domains and Boundaries in Chromosomes

  • Chapter
Book cover Genomic Imprinting

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 25))

Abstract

Current models to explain regulatory mechanisms underlying eukaryotic gene expression rely heavily on ideas derived from prokaryotic systems. These models assume that transcriptional enhancers account for the temporal and spatial specificity of eukaryotic gene expression by serving as binding sites for transcription factors that can then activate transcription by looping out intervening sequences and contacting components of the promoter-bound transcription complex (see, for example, Thompson and McKnight 1992; Franklin, Chap. 8, this vol.); but many phenomena, observed in a variety of systems, suggest that this picture is too simplistic to realistically explain the complexity of the eukaryotic genome and the variety of patterns of gene expression that are required for proper development of higher eukaryotes. DNA in the eukaryotic nucleus wraps around histone complexes to form nucleosomes, and the resulting primary chromatin fiber is organized into higher-order domains that arise from further compaction and attachment to specific subnuclear structures. This complex organization of the DNA within the nucleus would appear to preclude the type of interactions necessary to activate transcription, which require contacts among proteins bound to enhancers and promoters. Some of the regulatory input that controls eukaryotic gene expression must thus be directed to the establishment and maintenance of this higher-order domain organization, and transcriptional activation might involve the alteration of this organization in a manner that permits enhancer-promoter interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartolomei MS, and Tilghman, SM (1997) Genomic imprinting in mammals. Annu Rev Genet 31: 493–525

    Article  PubMed  CAS  Google Scholar 

  • Bone JR, Lavender J, Richman R, Palmer MJ, Turner BM, and Kuroda MI (1994) Acetylated histone H4 on the male X chromosome is associated with dosage compensation in Drosophila. Genes Dev 8: 96–104

    Article  PubMed  CAS  Google Scholar 

  • Bonifer C, Faust N, Huber MC, Saueressig H, and Sippel AE (1997) The chicken lysozyme domain. In: van Driel R, Otte AP (eds) Nuclear organization, chromatin structure, and gene expression. Oxford University Press, Oxford, pp 116–128

    Google Scholar 

  • Cai H, and Levine M (1995) Modulation of enhancer-promoter interactions by insulators in the Drosophila embryo. Nature 376: 533–536

    Article  PubMed  CAS  Google Scholar 

  • Cai HN, and Levine M (1997) The gypsy insulator can function as a promoter-specific silencer in the Drosophila embryo. EMBO J 16: 1732–1741

    Article  PubMed  CAS  Google Scholar 

  • Callan HG (1986) Lampbrush chromosomes. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Chung JH, Whiteley M, and Felsenfeld G (1993) A 5’ element of the chicken (3-globin domain serves as an insulator in human erythroid cells and protects against position effects in Drosophila. Cell 74: 505–514

    Article  PubMed  CAS  Google Scholar 

  • Chung JH, Bell AC, and Felsenfeld G (1997) Characterization of the chicken 13-globin insulator. Proc Natl Acad Sci USA 94: 575–580

    Article  PubMed  CAS  Google Scholar 

  • Cockerill PN, and Garrad WT (1986) Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites. Cell 44: 273–282

    Article  PubMed  CAS  Google Scholar 

  • Dorn R, Krauss V, Reuter G, and Saumweber H (1993) The enhancer of position-effect variegation of Drosophila E(var)3–93D codes for a chromatin protein containing a conserved domain common to several transcriptional regulators. Proc Natl Acad Sci USA 90: 11376–11380

    Article  PubMed  CAS  Google Scholar 

  • Dreesen TD, Henikoff S, and Loughney K (1991) A pairing-sensitive element that mediates trans-inactivation is associated with the Drosophila brown gene. Genes Dev 5: 331–340

    Article  PubMed  CAS  Google Scholar 

  • Elder JT, Forrester WC, Thompson C, Mager D, Henthorn P, Peretz M, Papayannopoulou T, and Groudine M (1990) Translocation of an erythroid-specific hypersensitive site in deletion-type hereditary persistence of fetal hemoglobin. Mol Cell Biol 10: 1382–1389

    PubMed  CAS  Google Scholar 

  • Farkas G, Gausz J, Galloni M, Reuter G, Gyurkovics H,and Karch F (1994) The Trithorax-like gene encodes the Drosophila GAGA factor. Nature 371: 806–808

    CAS  Google Scholar 

  • Gdula DA, Gerasimova TI, and Corces VG (1996) Genetic and molecular analysis of the gypsy chromatin insulator of Drosophila. Proc Natl Acad Sci USA 93: 9378–9383

    Article  PubMed  CAS  Google Scholar 

  • Georgiev PG, and Corces VG (1995) The su(Hw) protein bound to gypsy sequences in one chromosome can repress enhancer-promoter interactions in the paired gene located in the other homolog. Proc Natl Acad Sci USA 92: 5184–5188

    Article  PubMed  CAS  Google Scholar 

  • Gerasimova TI, and Corces VG (1998) Polycomb and thritorax group proteins mediate the funciton of a chromatin insulator. Cell 92: 511–521

    Article  PubMed  CAS  Google Scholar 

  • Georgiev PG, and Gerasimova TI (1989) Novel genes influencing the expression of the yellow locus and mdg4 (gypsy) in Drosophila melanogaster. Mol Gen Genet 220: 121–126

    Article  PubMed  CAS  Google Scholar 

  • Gerasimova TI, Gdula DA, Gerasimov DV, Simonova 0, and Corces VG (1995) A Drosophila protein that imparts directionality on a chromatin insulator is an enhancer of position-effect variegation. Cell 82: 587–597

    CAS  Google Scholar 

  • Geyer PK, and Corces VG (1992) DNA position-specific repression of transcription by a Drosophila Zn finger protein. Genes Dev 6: 1865–1873

    Article  PubMed  CAS  Google Scholar 

  • Hagstrom K, Muller M, and Schedl P (1996) Fab-7 functions as a chromatin domain boundary to ensure proper segment specification by the Drosophila bithorax complex. Genes Dev 10: 3202–3215

    Article  PubMed  CAS  Google Scholar 

  • Harrison DA, Gdula DA, Coyne RS, and Corces VG (1993) A leucine zipper domain of the suppressor of Hairy-wing protein mediates its repressive effect on enhancer function. Genes Dev 7: 1966–1978

    Article  PubMed  CAS  Google Scholar 

  • Hart C, Zhao K, and Laemmli UK (1997) The scs’ boundary element: characterization of boundary element-associated factors. Mol Cell Biol 17: 999–1009

    PubMed  CAS  Google Scholar 

  • Holdridge C, and Dorsett D (1991) Repression of hsp70 heat shock gene transcription by the suppressor of Hairy-wing protein of Drosophila melanogaster. Mol Cell Biol 11: 1894–1900

    PubMed  CAS  Google Scholar 

  • Jack J, Dorsett D, Delotto Y, and Liu S (1991) Expression of the cut locus in the Drosophila wing margin is required for cell type specification and is regulated by a distal enhancer. Development 113: 735–748

    PubMed  CAS  Google Scholar 

  • Kalos M, and Fournier REK (1995) Position-independent transgene expression mediated by boundary elements from the apolipoprotein B chromatin domain. Mol Cell Biol 15: 198–207

    PubMed  CAS  Google Scholar 

  • Kellum R, and Schedl P (1991) A position-effect assay for boundaries of higher order chromatin domains. Cell 64: 941–950

    Article  PubMed  CAS  Google Scholar 

  • Kellum R, and Schedl P (1992) A group of scs elements function as domain boundaries in an enhancer-blocking assay. Mol Cell Biol 12: 2424–2431

    PubMed  CAS  Google Scholar 

  • Kennison JA (1995) The Polycomb and trithorax group proteins of Drosophila: trans-regulators of homeotic gene function. Annu Rev Genet 29: 289–303

    Article  PubMed  CAS  Google Scholar 

  • Laemli UK, Käs E, Poljak L, and Adachi Y (1992) Scaffold-associated regions: cis-acting determinants of chromatin structural loops and functional domains. Curr Opin Genet Dev 2: 275–285

    Article  Google Scholar 

  • Lewis M, Helmsing PJ, and Ashburner M (1975) Parallel changes in puffing activity and patterns of protein synthesis in salivary glands of Drosophila. Proc Natl Acad Sci USA 72: 3604–3608

    Article  PubMed  CAS  Google Scholar 

  • Li Q, and Stamatoyannopoulos G (1994) Hypersensitive site 5 of the human beta locus control region functions as a chromatin insulator. Blood 84: 1399–1401

    PubMed  CAS  Google Scholar 

  • Lu L, and Tower J (1997) A transcriptional insulator element, the su(Hw) binding site, protects a chromosomal DNA replication origin from position effects. Mol Cell Biol 17: 2202–2206

    PubMed  CAS  Google Scholar 

  • Ludérus MEE, and van Driel R (1997) Nuclear matrix-associated regions. In: van Driel R and Otte AP (eds) Nuclear organization, chromatin structure, and gene expression. Oxford University Press, Oxford, pp 99–115

    Google Scholar 

  • Lyko F, Brenton JD, Surani MA, and Paro R (1997) An imprinting element from the mouse H19 locus functions as a silencer in Drosophila. Nat Genet 16: 171–173

    Article  PubMed  CAS  Google Scholar 

  • Mihaly J, Hogga I, Gausz J, Gyurkovics H, and Karch F (1997) In situ dissection of the Fab-7 region of the bithorax complex into a chromatin domain boundary and a Polycomb-response element. Development 124: 1809–1820

    PubMed  CAS  Google Scholar 

  • Mirkovitch J, Mirault M-E, and Laemmli UK (1984) Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell 39: 223–232

    Article  PubMed  CAS  Google Scholar 

  • Paro R (1995) Propagating memory of transcriptional states. Trends Genet 11: 295–297

    Article  PubMed  CAS  Google Scholar 

  • Paro R, and Harte PJ (1996) The role of Polycomb group and trithorax group chromatin complexes in the maintenance of determined cell states. In: Russo VEA, Martienssen RA and Riggs AD (eds) Epigenetic mechanisms of gene regulation, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 507–528

    Google Scholar 

  • Pazin MJ, Kamakaka RT, and Kadonaga JT (1994) ATP-dependent nucleosome reconfiguration and transcriptional activation from preassembled chromatin templates. Science 266: 2007–2011

    Article  PubMed  CAS  Google Scholar 

  • Peterson CL, and Tamkun JW (1995) The SWI-SNF complex: a chromatin remodeling machine? Trends Biochem Sci 20: 143–146

    Article  PubMed  CAS  Google Scholar 

  • Poljak L, Seum C, Mattioni T, and Laemmli UK (1994) SARs stimulate but do not confer position independent gene expression. Nucleic Acids Res 22: 4386–4394

    Article  PubMed  CAS  Google Scholar 

  • Roseman RR, Pirrotta V, and Geyer PK (1993) The su(Hw) protein insulates expression of the Drosophila melanogaster white gene from chromosomal position-effects. EMBO J 12: 435–442

    PubMed  CAS  Google Scholar 

  • Roseman RR, Swan JM, and Geyer PK (1995) A Drosophila insulator protein facilitates dosage compensation of the X chromosome mini-white gene located at autosomal insertion sites. Development 121: 3573–3582

    PubMed  CAS  Google Scholar 

  • Scott KS, and Geyer PM (1995) Effects of the Drosophila su(Hw) insulator protein on the expression of the divergently transcribed yolk protein genes. EMBO J 14: 6258–6279

    PubMed  CAS  Google Scholar 

  • Simon J (1995) Locking in stable states of gene expression: transcriptional control during Drosophila development. Curr Opin Cell Biol 7: 376–385

    Article  PubMed  CAS  Google Scholar 

  • Spana C, and Corces VG (1990) DNA bending is a determinant of binding specificity for a Drosophila zinc finger protein. Genes Dev 4: 1505–1515

    Article  PubMed  CAS  Google Scholar 

  • Thompson CC, and McKnight SL (1992) Anatomy of an enhancer. Trends Genet 8: 232–236

    CAS  Google Scholar 

  • Tissières A, Mitchell HK, and Tracy UM (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol 84: 389–398

    Article  PubMed  Google Scholar 

  • Tsukiyama T, Becker PB, and Wu C (1994) ATP-dependent nucleosome disruption at a heat shock promoter mediated by binding of GAGA transcription factor. Nature 367: 525–532

    Article  PubMed  CAS  Google Scholar 

  • Udvardy A, Maine E, and Schedl P (1985) The 87A7 chromomere: identification of novel chromatin structures flanking the heat shock locus that may define the boundaries of higher order domains. J Mol Biol 185: 341–358

    Article  PubMed  CAS  Google Scholar 

  • Vazquez J, and Schedl P (1994) Sequences required for enhancer blocking activity of scs are located within two nuclease-hypersensitive regions. EMBO J 13: 5984–5993

    PubMed  CAS  Google Scholar 

  • Wallrath LL, and Elgin SC (1995) Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev 9: 1263–1277

    Article  PubMed  CAS  Google Scholar 

  • Wang DM, Taylor S, and Levy-Wilson B (1996) Evaluation of the function of the human apolipoprotein B gene nuclear matrix associated regions in transgenic mice. J Lipid Res 37: 2117–2124

    PubMed  CAS  Google Scholar 

  • Zhao K, Hart CM, and Laemmli UK (1995) Visualization of chromosomal domains with boundary element-associated factor BEAF-32. Cell 81: 879–889

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Barolo S, Szymanski P, and Levine M (1996) The Fab-7 element of the bithorax complex attenuates enhancer-promoter interactions in the Drosophila embryo. Genes Dev 10: 3195–3201

    Article  PubMed  CAS  Google Scholar 

  • Zollman S, Godt D, Prive GG, Couderc JL, and Laski FA (1994) The BTB domain, found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in Drosophila. Proc Natl Acad Sci USA 91: 10717–10721

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gerasimova, T.I., Corces, V.G. (1999). Domains and Boundaries in Chromosomes. In: Ohlsson, R. (eds) Genomic Imprinting. Results and Problems in Cell Differentiation, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69111-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69111-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21956-0

  • Online ISBN: 978-3-540-69111-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics