Skip to main content

Fixed Parameter Tractable Alignment of RNA Structures Including Arbitrary Pseudoknots

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5029))

Abstract

We present an algorithm for computing the edit distance of two RNA structures with arbitrary kinds of pseudoknots. A main benefit of the algorithm is that, despite the problem is NP-hard, the algorithmic complexity adapts to the complexity of the RNA structures. Due to fixed parameter tractability, we can guarantee polynomial run-time for a parameter which is small in practice. Our algorithm can be considered as a generalization of the algorithm of Jiang et al. [1] to arbitrary pseudoknots. In their absence, it gracefully degrades to the same polynomial algorithm. A prototypical implementation demonstrates the applicability of the method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jiang, T., Lin, G., Ma, B., Zhang, K.: A general edit distance between RNA structures. J. Comput. Biol. 9(2), 371–388 (2002)

    Article  Google Scholar 

  2. Couzin, J.: Breakthrough of the year. Small RNAs make big splash. Science 298(5602), 2296–2297 (2002)

    Google Scholar 

  3. Siebert, S., Backofen, R.: MARNA: multiple alignment and consensus structure prediction of RNAs based on sequence structure comparisons. Bioinformatics 21(16), 3352–3359 (2005)

    Article  Google Scholar 

  4. Havgaard, J.H., Torarinsson, E., Gorodkin, J.: Fast pairwise structural RNA alignments by pruning of the dynamical programming matrix. PLoS Comput. Biol. 3(10), 1896–1908 (2007)

    Article  Google Scholar 

  5. Will, S., Reiche, K., Hofacker, I.L., Stadler, P.F., Backofen, R.: Inferring non-coding RNA families and classes by means of genome-scale structure-based clustering. PLoS Comput. Biol. 3(4), 65 (2007)

    Article  MathSciNet  Google Scholar 

  6. Bauer, M., Klau, G.W., Reinert, K.: Accurate multiple sequence-structure alignment of RNA sequences using combinatorial optimization. BMC Bioinformatics 8, 271 (2007)

    Article  Google Scholar 

  7. Staple, D.W., Butcher, S.E.: Pseudoknots: RNA structures with diverse functions. PLoS Biol. 3(6), 213 (2005)

    Article  Google Scholar 

  8. Theimer, C.A., Blois, C.A., Feigon, J.: Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function. Mol. Cell 17(5), 671–682 (2005)

    Article  Google Scholar 

  9. Evans, P.A.: Finding common subsequences with arcs and pseudoknots. In: CPM 1999: Proceedings of the 10th Annual Symposium on Combinatorial Pattern Matching, London, UK, pp. 270–280. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  10. Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Mol. Biol. 285(5), 2053–2068 (1999)

    Article  Google Scholar 

  11. Reeder, J., Giegerich, R.: Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics 5, 104 (2004)

    Article  Google Scholar 

  12. Evans, P.A.: Finding common RNA pseudoknot structures in polynomial time. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 223–232. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Sankoff, D.: Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM J. Appl. Math. 45(5), 810–825 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Matsui, H., Sato, K., Sakakibara, Y.: Pair stochastic tree adjoining grammars for aligning and predicting pseudoknot RNA structures. Bioinformatics 21(11), 2611–2617 (2005)

    Article  Google Scholar 

  15. Dost, B., Han, B., Zhang, S., Bafna, V.: Structural alignment of pseudoknotted RNA. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2006. LNCS (LNBI), vol. 3909, pp. 143–158. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Blin, G., Fertin, G., Hermelin, D., Vialette, S.: Fixed-parameter algorithms for protein similarity search under mRNA structure constraints. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 271–282. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Zwieb, C., Gorodkin, J., Knudsen, B., Burks, J., Wower, J.: tmRDB (tmRNA database). Nucleic Acids Res. 31(1), 446–447 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Paolo Ferragina Gad M. Landau

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Möhl, M., Will, S., Backofen, R. (2008). Fixed Parameter Tractable Alignment of RNA Structures Including Arbitrary Pseudoknots. In: Ferragina, P., Landau, G.M. (eds) Combinatorial Pattern Matching. CPM 2008. Lecture Notes in Computer Science, vol 5029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69068-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69068-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69066-5

  • Online ISBN: 978-3-540-69068-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics