Approximate String Matching with Address Bit Errors

  • Amihood Amir
  • Yonatan Aumann
  • Oren Kapah
  • Avivit Levy
  • Ely Porat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5029)


A string S ∈ Σ m can be viewed as a set of pairs S = { (σ i , i) : i ∈ { 0,..., m − 1} }. We consider approximate pattern matching problems arising from the setting where errors are introduced to the location component (i), rather than the more traditional setting, where errors are introduced to the content itself (σ i ). In this paper, we consider the case where bits of i may be erroneously flipped, either in a consistent or transient manner. We formally define the corresponding approximate pattern matching problems, and provide efficient algorithms for their resolution, while introducing some novel techniques.


Pattern Match Computer Architecture Deterministic Algorithm Content Error Information Processing Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amir, A., Aumann, Y., Benson, G., Levy, A., Lipsky, O., Porat, E., Skiena, S., Vishne, U.: Pattern matching with address errors: Rearrangement distances. In: Proc. 17th ACM-SIAM Symp. on Discrete Algorithms (SODA) (2006)Google Scholar
  2. 2.
    Amir, A., Cole, R., Hariharan, R., Lewenstein, M., Porat, E.: Overlap matching. Information and Computation 181(1), 57–74 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Amir, A., Lewenstein, M., Porat, E.: Approximate swapped matching. Information Processing Letters 83(1), 33–39 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM J. on Discrete Mathematics 11, 221–240 (1998)MathSciNetGoogle Scholar
  5. 5.
    Berman, P., Hannenhalli, S.: Fast sorting by reversal. In: Hirschberg, D.S., Meyers, G. (eds.) CPM 1996. LNCS, vol. 1075, pp. 168–185. Springer, Heidelberg (1996)Google Scholar
  6. 6.
    Carpara, A.: Sorting by reversals is difficult. In: Proc. 1st Annual Intl. Conf. on Research in Computational Biology (RECOMB), pp. 75–83. ACM Press, New York (1997)Google Scholar
  7. 7.
    Christie, D.A.: Sorting by block-interchanges. Information Processing Letters 60, 165–169 (1996)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Cole, R., Hariharan, R.: Verifying candidate matches in sparse and wildcard matching. In: Proc. 34st Annual Symposium on the Theory of Computing (STOC), pp. 592–601 (2002)Google Scholar
  9. 9.
    Hennessy, J.L., Patterson, D.A.: Computer architecture: A quantitative approach, 3rd edn. Morgan Kaufmann, San Francisco (2002)zbMATHGoogle Scholar
  10. 10.
    Karp, R., Miller, R., Rosenberg, A.: Rapid identification of repeated patterns in strings, arrays and trees. In: Symposium on the Theory of Computing, vol. 4, pp. 125–136 (1972)Google Scholar
  11. 11.
    Lowrance, R., Wagner, R.A.: An extension of the string-to-string correction problem. J. of the ACM, 177–183 (1975)Google Scholar
  12. 12.
    Motwani, R., Raghavan, P.: Randomized algorithms. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  13. 13.
    Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. of the ACM 27, 701–717 (1980)zbMATHCrossRefGoogle Scholar
  14. 14.
    Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, K.W. (ed.) EUROSAM 1979 and ISSAC 1979. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Amihood Amir
    • 1
    • 2
  • Yonatan Aumann
    • 1
  • Oren Kapah
    • 1
  • Avivit Levy
    • 3
  • Ely Porat
    • 1
  1. 1.Department of Computer ScienceBar Ilan UniversityRamat GanIsrael
  2. 2.Department of Computer ScienceJohns Hopkins UniversityBaltimore
  3. 3.CRIHaifa University, Mount CarmelHaifaIsrael

Personalised recommendations