Skip to main content

ReCombinatorics: Combinatorial Algorithms for Studying the History of Recombination in Populations

  • Conference paper
Combinatorial Pattern Matching (CPM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5029))

Included in the following conference series:

  • 558 Accesses

Abstract

The work discussed in this talk falls into the emerging area of Population Genomics. I will first introduce the area and then talk about specific problems and combinatorial algorithms involved in the inference of recombination from population data.

A phylogenetic network (or Ancestral Recombination Graph) is a generalization of a tree, allowing structural properties that are not tree-like. With the growth of genomic and population data (coming for example from the HAPMAP project) much of which does not fit ideal tree models, and the increasing appreciation of the genomic role of such phenomena as recombination (crossing-over and gene-conversion), recurrent and back mutation, horizontal gene transfer, and mobile genetic elements, there is greater need to understand the algorithmics and combinatorics of phylogenetic networks.

In this talk I will survey a range of our recent algorithmic, mathematical and practical results on phylogenetic networks with recombination and show applications of these results to several issues in Population Genomics.

Various parts of this work are joint work with Satish Eddhu, Chuck Langley, Dean Hickerson, Yun S. Song, Yufeng Wu, V. Bansal, V. Bafna and Z. Ding. All the papers and associated software can be accessed at http://wwwcsif.cs.ucdavis.edu/~gusfield/

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gusfield, D.: Optimal, efficient reconstruction of root-unknown phylogenetic networks with constrained recombination. J. Computer and Systems Sciences 70, 381–398 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Gusfield, D., Bansal, V.: A fundamental decomposition theory for phylogenetic networks and incompatible characters. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 217–232. Springer, Heidelberg (2005)

    Google Scholar 

  3. Gusfield, D., Bansal, V., Bafna, V., Song, Y.S.: a decomposition theory for phylogenetic networks and incompatible characters. J. Computational Biology (December 2007)

    Google Scholar 

  4. Gusfield, D., Eddhu, S., Langley, C.: Optimal efficient Reconstruction of phylogenetic networks with constrained recombination. Journal of Bioinformatics and Computational Biology 2(1), 173–213 (2004)

    Article  Google Scholar 

  5. Gusfield, D., Eddhu, S., Langley, C.: The fine structure of galls in phylogenetic networks. Inf. J. on Computing, Special issue on Computational Biology 16(4), 459–469 (2004)

    MathSciNet  Google Scholar 

  6. Gusfield, D., Hickerson, D., Eddhu, S.: A fundamental, efficiently computed lower bound on the number of recombinations needed in a phylogenetic history. Discrete Applied Math Special issue on Computational Biology (2007)

    Google Scholar 

  7. Song, Y., Gusfield, D., Ding, Z., Langley, C., Wu, Y.: Algorithms to distinguish the role of gene-conversion from single-crossover recombination in the derivation of SNP sequences in populations. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2006. LNCS (LNBI), vol. 3909, pp. 231–245. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Song, Y., Wu, Y., Gusfield, D.: Efficient computation of close lower and upper bounds on the minimum number of needed recombinations in the evolution of biological sequences. In: Bioinformatics, Proceedings of the ISMB 2005 Conference, vol. 21, pp. 413–422 (2005)

    Google Scholar 

  9. Wu, Y.: Association mapping of complex diseases with ancestral recombination graphs: models and efficient algorithms. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 488–502. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Wu, Y., Gusfield, D.: A new recombination lower bound and the minimum perfect phylogenetic forest problem. In: Proceedings of the 13th Annual International Conference on Combinatorics and Computing, pp. 16–26 (2007)

    Google Scholar 

  11. Wu, Y., Gusfield, D.: Improved algorithms for inferring the minimum mosaic of a set of recombinants. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 150–161. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Wu, Y., Gusfield, D.: Efficient computation of minimum recombination with genotypes (not haplotypes). In: Proceedings of The Computational Systems Biology Conference (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Paolo Ferragina Gad M. Landau

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gusfield, D. (2008). ReCombinatorics: Combinatorial Algorithms for Studying the History of Recombination in Populations. In: Ferragina, P., Landau, G.M. (eds) Combinatorial Pattern Matching. CPM 2008. Lecture Notes in Computer Science, vol 5029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69068-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69068-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69066-5

  • Online ISBN: 978-3-540-69068-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics