Novel Extension of k − TSP Algorithm for Microarray Classification

  • Marcin Czajkowski
  • Marek Krętowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5027)


This paper presents a new method, referred as Weight k − TSP, which generates simple and accurate decision rules that can be widely used for classifying gene expression data. The proposed method extends previous approaches: TSP and k − TSP algorithms by considering weight pairwise mRNA comparisons and percentage changes of gene expressions in different classes. Both rankings have been modified as well as decision rules, however the concept of ”relative expression reversals” is retained. New solutions to match analyzed datasets more accurately were also included. Experimental validation was performed on several human microarray datasets and obtained results are promising.


Support Vector Machine Microarray Dataset Fuzzy Support Vector Machine Simple Decision Rule Secondary Ranking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alizadeh, A.A.: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000)CrossRefGoogle Scholar
  2. 2.
    Bittner, M., Meltzer, P., Chen, Y.: Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406, 536–540 (2000)CrossRefGoogle Scholar
  3. 3.
    Cho, H.S., Kim, T.S., Wee, J.W.: cDNA Microarray Data Based Classification of Cancers Using Neural Networks and Genetic Algorithms. Nanotech 1 (2003)Google Scholar
  4. 4.
    Dhanasekaran, S.M.: Delineation of prognostic biomarkers in prostate cancer. Nature 412, 822–826 (2001)CrossRefGoogle Scholar
  5. 5.
    Duda, R.O., Heart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. J. Wiley, New York (2001)zbMATHGoogle Scholar
  6. 6.
    Duggan, D.J., Bittner, M., Chen, Y., Meltzer, P., Trent, J.M.: Expression profiling using cDNA microarrays. Nature Genetics Supplement 21, 10–14 (1999)CrossRefGoogle Scholar
  7. 7.
    Geman, D., d’Avignon, C., Naiman, D.Q., Winslow, R.L.: Classifying Gene Expression Profiles from Pairwise mRNA Comparisons. Statistical Applications in Genetics and Molecular Biology 3(1), 19 (2007)MathSciNetGoogle Scholar
  8. 8.
    Grześ, M., Krȩtowski, M.: Decision Tree Approach to Microarray Data Analysis. Biocybernetics and Biomedical Engineering 27(3), 29–42 (2007)Google Scholar
  9. 9.
    Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  10. 10.
    Kononenko, I.: Estimating Attributes: Analysis and Extensions of RELIEF. In: European Conference on Machine Learning, pp. 171–182 (1994)Google Scholar
  11. 11.
    Lipschutz, R.J., Fodor, S.P.A., Gingeras, T.R., Lockhart, D.J.: High density synthetic oligonucleotide arrays. Nature Genetics Supplement 21, 20–24 (1999)CrossRefGoogle Scholar
  12. 12.
    Lu, Y., Han, J.: Cancer classification using gene expression data. Information Systems 28(4), 243–268 (2003)zbMATHCrossRefGoogle Scholar
  13. 13.
    Mao, Y., Zhou, X., Pi, D., Sun, Y., Wong, S.T.C.: Multiclass Cancer Classification by Using Fuzzy Support Vector Machine and Binary Decision Tree With Gene Selection. J. Biomed. Biotechnol., 160–171 (2005)Google Scholar
  14. 14.
    Nelson, P.S.: Predicting prostate cancer behavior using transcript profiles. Journal of Urology 172, S28–S32 (2004)CrossRefGoogle Scholar
  15. 15.
    Sebastiani, P., Gussoni, E., Kohane, I.S., Ramoni, M.F.: Statistical challenges in functional genomics. Statistical Science 18(1), 33–70 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Simon, R., Radmacher, M.D., Dobbin, K., McShane, L.M.: Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. Journal of the National Cancer Institute 95, 14–18 (2003)CrossRefGoogle Scholar
  17. 17.
    Speed, T.: Statistical Analysis of Gene Expression Microarray Data. Chapman & Hall/CRC, New York (2003)zbMATHGoogle Scholar
  18. 18.
    Tan, A.C., Naiman, D.Q., Xu, L., Winslow, R.L., Geman, D.: Simple decision rules for classifying human cancers from gene expression profiles. Bioinformatics 21, 3896–3904 (2005)CrossRefGoogle Scholar
  19. 19.
    Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)zbMATHGoogle Scholar
  20. 20.
    Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar
  21. 21.
    Tan, X.L., Naiman, A.C., Geman, D.Q., Windslow, D., Robust, R.L.: prostate cancer marker genes emerge from direct integration of inter-study microarray data. Bioinformatics 21(20), 3905–3911 (2005)CrossRefGoogle Scholar
  22. 22.
    Zhang, C., Li, P., Rajendran, A., Deng, Y., Chen, D.: Parallelization of multicategory support vector machines (PMC-SVM) from classifying microarray data. BMC Bioinformatics (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Marcin Czajkowski
    • 1
  • Marek Krętowski
    • 1
  1. 1.Faculty of Computer ScienceBiałystok Technical UniversityBiałystokPoland

Personalised recommendations