Advertisement

Abstract

Constrained objects provide a suitable object-oriented style for modeling systems under constraints. A set of classes is defined to represent a problem, whose state is then controlled by a constraint satisfaction engine. This engine is commonly a black-box based on a predefined and non-customizable search strategy. This system rigidity, of course, does not allow users to tune models in order to improve the search process. In this paper we target this issue by presenting an extensible formalism to define a wide range of search options so as to customize, improve and/or analyze the search process of constrained object models.

Keywords

Constraint Programming Heuristic Search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gecode System, http://www.gecode.org
  2. 2.
  3. 3.
    Borning, A.H.: The Programming Languages Aspects of ThingLab, a Constraint-Oriented Simulation Laboratory. ACM TOPLAS 3(4), 353–387 (1981)CrossRefGoogle Scholar
  4. 4.
    Diaz, D., Codognet, P.: The gnu prolog system and its implementation. In: SAC (2), pp. 728–732 (2000)Google Scholar
  5. 5.
    Frisch, A.M., et al.: The design of essence: A constraint language for specifying combinatorial problems. In: IJCAI, pp. 80–87 (2007)Google Scholar
  6. 6.
    Granvilliers, L., et al.: Algorithm 852: Realpaver: an interval solver using constraint satisfaction techniques. ACM Trans. Math. Softw. 32(1), 138–156 (2006)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Wallace, M., et al.: Eclipse: A platform for constraint logic programming (1997)Google Scholar
  8. 8.
    Nethercote, N., et al.: Minizinc: Towards a standard cp modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Rafeh, R., et al.: From zinc to design model. In: PADL, pp. 215–229 (2007)Google Scholar
  10. 10.
    Rossi, F.: Handbook of Constraint Programming. Elsevier, Amsterdam (2006)CrossRefGoogle Scholar
  11. 11.
    Gelle, E., Faltings, B.: Solving mixed and conditional constraint satisfaction problems. Constraints 8(2), 107–141 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Jayaraman, B., Tambay, P.Y.: Constrained Objects for Modeling Complex Structures. In: OOPSLA, Minneapolis, USA (2000)Google Scholar
  13. 13.
    Apt, K.R.: Principles of Constraint Programming. Cambridge Press (2003)Google Scholar
  14. 14.
    Dechter, R.: Constraint Processing. Elsevier, Amsterdam (2003)Google Scholar
  15. 15.
    Van Hentenryck, P.: The OPL Language. The MIT Press, Cambridge (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ricardo Soto
    • 1
    • 2
  • Laurent Granvilliers
    • 1
  1. 1.LINA, CNRSUniversité de NantesFrance
  2. 2.Escuela de Ingeniería InformáticaPontificia Universidad Católica de ValparaísoChile

Personalised recommendations