Advertisement

Ant Colony Optimization for the Single Machine Total Earliness Tardiness Scheduling Problem

  • Rym M’Hallah
  • Ali Alhajraf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5027)

Abstract

This paper proposes an ant colony optimization hybrid heuristic (ACH) for the total earliness tardiness single machine scheduling problem where jobs have different processing times and distinct due dates, and the machine can not be idle. ACH is an ant colony system with daemon actions that intensify the search around good quality solutions. The computational results show the effectiveness of ACH.

Keywords

ant colonies earliness tardiness scheduling heuristics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdul-Razaq, T.S., Potts, C.N.: Dynamic programming state-space relaxation for single machine scheduling. Journal of the Operational Research Society 39, 141–152 (1988)CrossRefzbMATHGoogle Scholar
  2. 2.
    Albritton, M.D., McMullen, P.R.: Optimal product design using a colony of virtual ants. European Journal of Operational Research 176, 498–520 (2007)CrossRefzbMATHGoogle Scholar
  3. 3.
    Almeida, M.T., Centeno, M.: A composite heuristic for the single machine early tardy job scheduling problem. Computers & Operations Research 25, 535–625 (1998)CrossRefGoogle Scholar
  4. 4.
    Bullnheimer, B., Hartl, R.F., Strauss, C.: An improved ant system algorithm for the vehicle routing problem. Annals of Operations Research 89, 319–328 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)zbMATHGoogle Scholar
  6. 6.
    Gagné, C., Price, W.L., Gravel, M.: Comparing an ACO algorithm with other heuristics for the single machine scheduling problem with sequence-dependent setup times. Journal of the Operational Research Society 53, 895–906 (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    García-Martínez, C., Cordón, O., Herrera, F.: A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP. European Journal of Operational Research 180, 116–148 (2007)CrossRefzbMATHGoogle Scholar
  8. 8.
    Gutjahr, W.J.: A graph-based ant system and its convergence. Future Generation Computer Systems 16, 873–888 (2000)CrossRefGoogle Scholar
  9. 9.
    Gutjahra, W.J., Raunerb, M.S.: An ACO algorithm for a dynamic regional nurse-scheduling problem in Austria. Computers & Operations Research 34, 642–666 (2007)CrossRefGoogle Scholar
  10. 10.
    Heinonen, J., Pettersson, F.: Hybrid ant colony optimization and visibility studies applied to a job-shop scheduling problem. Applied Mathematics and Computation 187(2), 989–998 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Liao, C.J., Juan, H.C.: An ant colony optimization for single-machine tardiness scheduling with sequence-dependent setups. Computers & Operations Research 34, 1899–1909 (2007)CrossRefzbMATHGoogle Scholar
  12. 12.
    Liaw, C.F.: A branch and bound algorithm for the single machine earliness and tardiness scheduling problem. Computers & Operations Research 26, 679–693 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Lo, S.T., Chen, R.M., Huang, Y.M., Wu, C.L.: Multiprocessor system scheduling with precedence and resource constraints using an enhanced ant colony system. Expert Systems with Applications 34(3), 2071–2081 (2008)CrossRefGoogle Scholar
  14. 14.
    M’Hallah, R.: Minimizing Total Earliness and Tardiness on a Single Machine Using a Hybrid Heuristic. Computers & Operations Research 34(10), 3126–3142 (2007)CrossRefzbMATHGoogle Scholar
  15. 15.
    Ow, P.S., Morton, E.T.: The single machine early/tardy problem. Management Science 35, 177–191 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Rossi, A., Dini, G.: Flexible job-shop scheduling with routing flexibility and separable setup times using ant colony optimisation method. Robotics and Computer-Integrated Manufacturing 23, 503–516 (2007)CrossRefGoogle Scholar
  17. 17.
    Tasgetiren, M.F., Liang, Y., Sevkli, M., Gencyilmaz, G.: A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem. European Journal of Operational Research 177, 1930–1947 (2007)CrossRefzbMATHGoogle Scholar
  18. 18.
    Valente, J.M.S., Alves, R.A.F.S.: Filtered and Recovering beam search algorithms for the early/tardy scheduling problem with no idle time. Computers & Industrial Engineering 48(2), 363–375 (2005)CrossRefGoogle Scholar
  19. 19.
    Valente, J.M.S., Alves, R.A.F.S.: Improved heuristics for the early/tardy scheduling problem with no idle time. Computers & Operations Research 32(3), 557–569 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Ventura, J.A., Radhakrishnan, S.: Single machine scheduling with symetric earliness and tardiness penalties. European Journal of Operational Research 144, 598–612 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Ying, G.C., Liao, C.J.: Ant colony system for permutation flow-shop sequencing. Computers & Operations Research 31, 791–801 (2004)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Rym M’Hallah
    • 1
  • Ali Alhajraf
    • 1
  1. 1.Department of Statistics and Operations ResearchKuwait UniversitySafatKuwait

Personalised recommendations