Advertisement

Lagrangian-Based Solution Approaches for a Resource-Constrained Parallel Machine Scheduling Problem with Machine Eligibility Restrictions

  • Emrah B. Edis
  • Ceyhun Araz
  • Irem Ozkarahan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5027)

Abstract

This study is motivated by a real world scheduling problem in an injection molding department of an electrical appliance company. In this paper, a resource-constrained parallel machine scheduling problem with machine eligibility restrictions is investigated. For the problem, an integer linear program is developed with the objective of minimizing total flow time. Based on this model, a Lagrangian-based solution approach with a subgradient optimization procedure has been proposed. Additionally, a problem-specific heuristic algorithm is developed to obtain near-optimal solutions. Through randomly generated instances of the problem, it is demonstrated that the proposed algorithms generate not only very tight lower bounds but also efficient results with a small optimality gap.

Keywords

Parallel machine scheduling Resource constraints Machine eligibility Lagrangian relaxation Subgradient optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ventura, J.A., Kim, D.: Parallel Machine Scheduling with Earliness-Tardiness Penalties and Additional Resource Constraints. Comput. Oper. Res. 30, 1945–1958 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Pinedo, M.: Scheduling Theory, Algorithms and Systems. Prentice-Hall, Englewood Cliffs (1995)zbMATHGoogle Scholar
  3. 3.
    Daniels, R.L., Hua, S.Y., Webster, S.: Heuristics for Parallel-Machine Flexible-Resource Scheduling Problems with Unspecified Job Assignment. Comput. Oper. Res. 26, 143–155 (1999)zbMATHCrossRefGoogle Scholar
  4. 4.
    Blazewicz, J., Lenstra, J.K., Rinnooy Kan, A.H.G.: Scheduling subject to Resource Constraints: Classification and Complexity. Discrete Appl. Math. 5, 11–24 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Edis, E.B., Ozkarahan, I.: Parallel Machine Scheduling with Additional Resources: A Brief Review of the Literature. In: The 11th IFAC Intl. Symposium CEFIS 2007, Istanbul, Turkey, pp. 381–386 (2007)Google Scholar
  6. 6.
    Ruiz-Torres, A.J., Centeno, G.: Scheduling with Flexible Resources in Parallel Work centers to Minimize Maximum Completion Time. Comput. Oper. Res. 34, 48–69 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Daniels, R.L., Hoopes, B.J., Mazzola, J.B.: An Analysis of Heuristics for the Parallel-Machine Flexible-Resource Scheduling Problem. Ann. Oper. Res. 70, 439–472 (1997)zbMATHCrossRefGoogle Scholar
  8. 8.
    Daniels, R.L., Hoopes, B.J., Mazzola, J.B.: Scheduling Parallel Manufacturing Cells with Resource Flexibility. Manage. Sci. 42(9), 1260–1276 (1996)zbMATHCrossRefGoogle Scholar
  9. 9.
    Kellerer, H., Strusevisch, V.A.: Scheduling Problems for Parallel Dedicated Machines under Multiple Resource Constraints. Discrete Appl. Math. 133, 45–68 (2004)CrossRefGoogle Scholar
  10. 10.
    Li, Y., Wang, F., Lim, A.: Resource Constraints Machine Scheduling: A Genetic Algorithm Approach. In: The 2003 Congress on Evolutionary Computation CEC 2003, vol. 2, pp. 1080–1085. IEEE Press, Los Alamitos (2003)Google Scholar
  11. 11.
    Ventura, J.A., Kim, D.: Parallel Machine Scheduling About an Unrestricted Due Date and Additional Resource Constraints. IIE Trans. 32, 147–153 (2000)Google Scholar
  12. 12.
    Tamaki, H., Hasegawa, Y., Kozasa, J., Araki, M.: Application of Search Methods to Scheduling Problem in Plastics Forming Plant: A Binary Representation Approach. In: Proceedings of 32nd Conference on Decision and Control, pp. 3845–3850. IEEE Press, Los Alamitos (1993)CrossRefGoogle Scholar
  13. 13.
    Chen, J.-F.: Unrelated Parallel Machine Scheduling with Secondary Resource Constraints. Int J. Adv. Manuf. Tech. 26, 285–292 (2005)CrossRefGoogle Scholar
  14. 14.
    Chen, J.-F., Wu, T.-H.: Total Tardiness Minimization on Unrelated Parallel Machine Scheduling with Auxiliary Equipment Constraints. Omega- Int. J. Manage. S. 34, 81–89 (2006)CrossRefGoogle Scholar
  15. 15.
    Luh, P.B., Hoitomt, D.J.: Scheduling of Manufacturing Systems Using the Lagrangian Relaxation Technique. IEEE T. Automat. Contr. 38(7), 1066–1079 (1993)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Martello, S., Soumis, F., Toth, P.: Exact and Approximation Algorithms for Makespan Minimization on Unrelated Parallel Machines. Discrete Appl. Math. 75, 169–188 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Beasley, J.E.: Lagrangean Relaxation. In: Reeves, C.R. (ed.) Modern Heuristic Techniques for Combinatorial Problems, McGraw-Hill, UK (1995)Google Scholar
  18. 18.
    ILOG OPL Studio 3.7, Language Manual, ILOG S.A, France (2003)Google Scholar
  19. 19.
    Vairaktarakis, G.L., Cai, X.: The Value of Processing Flexibility in Multipurpose Machines. IIE Trans. 35, 763–774 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Emrah B. Edis
    • 1
  • Ceyhun Araz
    • 1
  • Irem Ozkarahan
    • 2
  1. 1.Department of Industrial EngineeringDokuz Eylul UniversityIzmirTurkey
  2. 2.Computer Science DepartmentTroy UniversityMontgomeryUSA

Personalised recommendations