Skip to main content

Potential Distribution Modelling Using Machine Learning

  • Conference paper
New Frontiers in Applied Artificial Intelligence (IEA/AIE 2008)

Abstract

Potential distribution modelling has been widely used to predict and to understand the geographical distribution of species. These models are generally produced by retrieving the environmental conditions where the species is known to be present or absent and feeding this data into a modelling algorithm. This paper investigates the use of Machine Learning techniques in the potential distribution modelling of plant species Stryphnodendron obovatum Benth (MIMOSACEAE). Three techniques were used: Support Vector Machines, Genetic Algorithms and Decision Trees. Each technique was able to extract a different representation of the relations between the environmental conditions and the distribution profile of the species being considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Egbert, S.L., Peterson, A.T., Sanchez-Cordero, C., Price, K.P.: Modeling conservation priorities in Veracruz, Mexico. In: GIS in natural resource management: Balancing the technical-political equation, pp. 141–150 (1998)

    Google Scholar 

  2. Ortega-Huerta, M.A., Peterson, A.T.: Modelling spatial patterns of biodiversity for conservation prioritization in north-eastern Mexico. Diversity and Distributions 10, 39–54 (2004)

    Article  Google Scholar 

  3. Peterson, A.T., Vieglais, D.A.: Predicting species invasions using ecological niche modeling: New approaches from bioinformatics attack a pressing problem. BioScience 51(5), 363–371 (2001)

    Article  Google Scholar 

  4. Peterson, A.T., Papes, M., Kluza, D.A.: Predicting the potential invasive distributions of four alien plant species in north America. Weed Science 51(6), 863–868 (2003)

    Article  Google Scholar 

  5. Huntley, B., Berry, P.M., Cramer, W., McDonald, A.P.: Modelling present and potential future ranges of some european higher plants using climate response surfaces. J. Biogeography 22, 967–1001 (1995)

    Article  Google Scholar 

  6. Pearson, R.G., Dawson, T.P., Berry, P.M., Harrison, P.A.: Species: A spatial evaluation of climate impact on the envelope of species. Ecological Modelling 154, 289–300 (2002)

    Article  Google Scholar 

  7. Peterson, A.T., Ortega-Huerta, M.A., Bartley, J., Sanchez-Cordero, V., Buddemeier, R.H., Stockwell, D.R.B.: Future projections for mexican faunas under global climate change scenarios. Nature 416, 626–629 (2002)

    Article  Google Scholar 

  8. Guisan, A., Thuiller, W.: Predicting species distribution: offering more than simple habitat models. Ecology Letters 8, 993–1009 (2005)

    Article  Google Scholar 

  9. Peterson, A.T., Sanchez-Cordero, V., Beard, C.B., Ramsey, J.M.: Ecologic niche modeling and potential reservoirs for chagas disease, Mexico. Emerging Infectious Diseases 8, 662–667 (2002)

    Google Scholar 

  10. Stockwell, D.R.B., Peters, D.P.: The GARP modelling system: Problems and solutions to automated spatial prediction. International Journal of Geographic Information Systems 13, 143–158 (1999)

    Article  Google Scholar 

  11. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  12. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  13. Elith, J., Crahanm, C.H., Anderson, R.P., Miroslav, M.D., Ferrier, S., Guisan, A., Hijmans, R.J., Hucttmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, G., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S.J., Richardson, K., Scachettti-Pereira, R., Schapire, R.E., Soberón, J., Williams, S., Wisz, M.S., Zimmermann, N.: Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006)

    Article  Google Scholar 

  14. Mitchell, M.: An introduction to Genetic Algorithms. MIT Press, Cambridge (1999)

    Google Scholar 

  15. Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)

    Google Scholar 

  16. Peterson, A.T.: Predicting species’ geographic distributions based on ecological niche modeling. Condor 103(3), 599–605 (2001)

    Article  Google Scholar 

  17. Siqueira, M.F.: Uso de modelagem de nicho fundamental na avaliação do padrão de distribuição geográfica de espécies vegetais. PhD thesis, Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos (2005) (in Portuguese)

    Google Scholar 

  18. Soberón, J., Peterson, A.T.: Interpretation of models of fundamental ecological niches and species distributional areas. In: Biodiversity Informatics (2005)

    Google Scholar 

  19. Fielding, A.H.: Machine learning methods for ecological applications. Kluwer Academic, Dordrecht (1999)

    MATH  Google Scholar 

  20. Lek, S., Guegan, J.F.: Artificial neural networks as a tool in ecological modelling: an introduction. Ecological Modelling 120, 65–73 (1999)

    Article  Google Scholar 

  21. Ath, G.D., Fabricius, K.E.: Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecol. 81(11), 3178–3192 (2000)

    Article  Google Scholar 

  22. Pearson, R.G., Dawson, T.P., Liu, C.: Modelling species distribution in britain: a hierarchical integration of climate and land-cover data. Ecography 27, 285–298 (2004)

    Article  Google Scholar 

  23. Siqueira, M.F.D., Peterson, A.T.: Consequences of global climate change for geographic distributions of cerrado tree species. Biota Neotropica 3(2) (2003), http://www.biotaneotropica.org.br/v3n2/pt/abstract?article+BN00803022003

  24. Guo, Q., Kelly, M., Grahan, C.H.: Support vector machines for predicting distribution of sudden oak death in California. Ecol. Modelling 182, 75–90 (2005)

    Article  Google Scholar 

  25. Ratter, J.A., Bridgewater, S., Ribeiro, J.F., Dias, T.A.B., Silva, M.R.: Distribuição das espécies lenhosas da fitofisionomia cerrado sentido restrito nos estados compreendidos no bioma cerrado. Boletim do Herbário Ezechias Paulo Heringer 5, 5–43 (2000) (in portuguese)

    Google Scholar 

  26. Durigan, G., Siqueira, M.F., Franco, G.A.D.C., Bridgewater, S., Ratter, J.A.: The vegetation of priority areas for cerrado conservation in são paulo state, brazil. Edinburgh Journal of Botany 60, 217–241 (2003)

    Article  Google Scholar 

  27. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A.: Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 1965–1978 (2005)

    Article  Google Scholar 

  28. Souza, A.L.F., Giarola, A., Gondim, M.A.: Aplicao de mascaramento de nuvens e correção atmosférica na geração do índice de vegetação por diferença normalizada no cptec/inpe. In: XIV Cong. Brasileiro de Agrometeorologia (2005) (in portuguese)

    Google Scholar 

  29. Quilan, J.R.: C4.5 Programs for Machine Learning. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  30. Vapnik, V.N.: The nature of Statistical learning theory. Springer, New York (1995)

    MATH  Google Scholar 

  31. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2004), http://www.csie.ntu.edu.tw/~cjlin/libsvm/

  32. Demsar, J.: Statistical comparisons of classifiers over multiple datasets. Journal of Machine Learning Research 7, 1–30 (2006)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ngoc Thanh Nguyen Leszek Borzemski Adam Grzech Moonis Ali

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lorena, A.C., de Siqueira, M.F., De Giovanni, R., de Carvalho, A.C.P.L.F., Prati, R.C. (2008). Potential Distribution Modelling Using Machine Learning. In: Nguyen, N.T., Borzemski, L., Grzech, A., Ali, M. (eds) New Frontiers in Applied Artificial Intelligence. IEA/AIE 2008. Lecture Notes in Computer Science(), vol 5027. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69052-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69052-8_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69045-0

  • Online ISBN: 978-3-540-69052-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics