Advertisement

An Empirical Investigation of the Use of a Neural Network Committee for Identifying the Streptococcus Pneumoniae Growth Phases in Batch Cultivations

  • Antonio C. L. Horta
  • Teresa C. Zangirolami
  • Maria do Carmo Nicoletti
  • Luciana Montera
  • Talita S. Carmo
  • Viviane M. Gonçalves
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5027)

Abstract

Streptococcus pneumoniae is a bacterial pathogen that causes many life-threatening diseases and an effective vaccine against this pa-thogen is still subject of research. These bacteria grow with low carbon dioxide production, which hinders the application of exhaust gas composition for on-line process monitoring. This work investigates the proposal of a committee of neural networks for identifying Streptococcus pneumoniae growth phases, to be used for on-line state inference. The committee results as well as the accuracy for predicting the culture phases are compared to the results of a unique neural network, for different input variables. The best configuration for the software was: a committee of three NN trained with two input attributes (optical density and mass of alkali solution), 200 epochs of training and log sigmoid as the activation function in the hidden layer as well as in the output layer.

Keywords

growth phase identification neural network committee batch cultivations Streptococcus pneumoniae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bricks, L.F., Berezin, E.: Impact of pneumococcal conjugate vaccine on the prevention of invasive pneumococcal diseases. J. Pediatr (R. J.) 82(3 Suppl), S67–74 (2006)Google Scholar
  2. 2.
    Shuler, M.L., Kargi, F.: Bioprocess Engineering: Basic Concepts, 2nd edn. Prentice-Hall, Englewood Cliffs (2001)Google Scholar
  3. 3.
    Hoeprich, P.D.: Carbon-14 labeling of Diplococcus pneumoniae. J. Bacteriol. 69, 682–688 (1955)Google Scholar
  4. 4.
    Gonçalves, V.M., Zangirolami, T.C., Giordano, R.L.C., Raw, I., Tanizaki, M.M., Giordano, R.C.: Optimization of medium and culture conditions for capsular polysaccharide production by Streptococcus pneumoniae serotype 23F. Applied Microbiology and Biotechnology, Germany 59, 713–717 (2002)CrossRefGoogle Scholar
  5. 5.
    Dische, Z., Shettles, B.: A specific color reaction of methylpentoses and a spectrophotometric micromethod for their determination. J. Biol. Chem. 175, 595–603 (1948)Google Scholar
  6. 6.
    Eilers, P.H.C.: A Perfect Smoother. Analytical Chemistry 75(14), 3631–3636 (2003)CrossRefGoogle Scholar
  7. 7.
    Giordano, R.C., Bertini, J.R., Nicoletti, M.C., Giordano, R.L.C.: On-line filtering of CO 2 signals from a bioreactor gas outflow using a committee of constructive neural networks. Bioprocess and Biosystems Engineering (2007) (accepted for publication)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Antonio C. L. Horta
    • 1
  • Teresa C. Zangirolami
    • 2
  • Maria do Carmo Nicoletti
    • 3
  • Luciana Montera
    • 1
  • Talita S. Carmo
    • 4
  • Viviane M. Gonçalves
    • 4
  1. 1.PPG-BiotechnologyUFSCar, SPBrazil
  2. 2.Dept. of Chemical EngineeringUFSCar, SPBrazil
  3. 3.Dept. of Computer ScienceUFSCar, SPBrazil
  4. 4.Butantan Institute, SPBrazil

Personalised recommendations