Advertisement

Application of Data Mining Algorithms to TCP throughput Prediction in HTTP Transactions

  • Leszek Borzemski
  • Marta Kliber
  • Ziemowit Nowak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5027)

Abstract

This paper presents a study of the application of data mining algorithms to the prediction of TCP throughput in HTTP transactions. We are using data mining models built on the basis of historic measurements of network performance gathered using WING system. These measurements reflect Web performance as experienced by the end-users located in Wroclaw, Poland. Data mining models are created using the algorithms available in Microsoft SQL Server 2005 and IBM Intelligent Miner tools. Our results show that our data mining based TCP throughput prediction returns accurate results. The application of our method in building of so-called “best performance hit” operation mode of the search engines is proposed.

Keywords

data mining TCP throughput prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borzemski, L.: The Use of Data Mining to Predict Web performance. Cybernetics and Systems 37(6), 587–608 (2006)CrossRefGoogle Scholar
  2. 2.
    Borzemski, L., Cichocki, Ł., Fraś, M., Kliber, M., Nowak, Z.: MWING: A Multiagent System for Web Site Measurements. In: Nguyen, N.T., Grzech, A., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2007. LNCS (LNAI), vol. 4496, pp. 278–287. Springer, Heidelberg (2007)Google Scholar
  3. 3.
    Borzemski, L., Cichocki, Ł., Nowak, Z.: WING: A System for Performance Measurement of WWW Service from the User’s Point of View (in Polish). Studia Informatica 24(2A), 139–150 (2003)Google Scholar
  4. 4.
    Borzemski, L., Lubczyński, Ł., Nowak, Z.: Application of Data Mining for the Analysis of Internet Path Performance. In: Proc. of 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing, pp. 54–59. IEEE Comp. Soc. Press, Los Alamitos (2004)Google Scholar
  5. 5.
    Borzemski, L., Nowak, Z.: Estimation of Throughput and TCP Round-Trip Times. In: 10th Polish Teletraffic Symposium PSRT 2003 (2003)Google Scholar
  6. 6.
    Borzemski, L., Nowak, Z.: An Empirical Study of Web Quality: Measuring the Web from Wrocław University of Technology Campus. In: Matera, M., Comai, S. (eds.) Engineering Advances of Web Applications, pp. 307–320. Rinton Press, Princeton, NJ (2004)Google Scholar
  7. 7.
    Borzemski, L., Nowak, Z.: Best performance hit: A Novel Method for Web Resource Gaining (in Polish). In: Kwiecień, A., Grzywak, A. (eds.) High Performance Computer Networks. Applications and Security, pp. 23–33. WKŁ, Warszawa (2005)Google Scholar
  8. 8.
    Huang, T., Subhlok, J.: Fast Pattern-Based Throughput Prediction for TCP Bulk Transfers. In: Proceedings of the Fifth IEEE International Symposium on Cluster Computing and the Grid, Washington, DC, USA, vol. 1, pp. 410–417 (2005)Google Scholar
  9. 9.
    Lu, D., Qiao, Z., Dinda, P.A., Bustamante, F.E.: Characterizing and Predicting TCP Throughput on the Wide Area Network Distributed Computing Systems. In: Proceedings 25th IEEE International Conference, pp. 414–424 (2005)Google Scholar
  10. 10.
    Mirza, M., Sommers, J., Barford, P., Zhu, X.: A Machine Learning Approach to TCP Throughput Prediction. In: ACM SIGMETRICS 2007 Proc., vol. 35, pp. 97–108 (2007)Google Scholar
  11. 11.
    Osowski, S.: Neural Networks (in Polish), Warsaw (1994)Google Scholar
  12. 12.
    Pednault, E.: Transform Regression and the Kolmogorov Superposition Theorem. In: Proc. of the Sixth SIAM International Conference on Data Mining, Bethesda, Maryland, April 20-22 (2006)Google Scholar
  13. 13.
    Qiao, Y., Skicewich, J., Dinda, P.: An Empirical Study of the Multiscale Predictability of Network Traffic. In: Proc. IEEE HPDC (2003)Google Scholar
  14. 14.
    Sang, A., Li, S.: A Predictability Analysis of Network Traffic. In: Proc. of the 2000 IEEE Computer and Comm Societies, Conf. on Computer Communications, pp. 342–351 (2000)Google Scholar
  15. 15.
  16. 16.
    Microsot SQL 2005 Data Mining Algorithms, http://msdn2.microsoft.com/en-us/library/ms175595.aspx

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Leszek Borzemski
    • 1
  • Marta Kliber
    • 1
  • Ziemowit Nowak
    • 1
  1. 1.Institute of Information Science and EngineeringWroclaw University of TechnologyWroclawPoland

Personalised recommendations