Advertisement

Intelligent System for Traffic Signs Recognition in Moving Vehicles

  • Bogusław Cyganek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5027)

Abstract

Recognition of traffic signs by systems of the intelligent vehicles can increase safety and comfort of driving. It can be also used for highway inspection. In this paper we present architecture of such a system, with special focus on fast sign tracking method. In each frame an adaptive window is built around each area with high probability of existence of an object to be tracked. However, contrary to the mean-shift algorithm, it is not necessary to compute a centroid for each such object. Thus the method allows faster execution which is a key parameter for the real-time scene analysis.

Keywords

Traffic Sign Road Sign Intelligent Vehicle Fast Execution Adaptive Window 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bradski, G.: Computer Vision Face Tracking For Use in a Perceptual User Interface. Intel Technical Report (1998)Google Scholar
  2. 2.
    Comaniciu, D., Meer, P.: Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE PAMI 24(5), 603–619 (2002)Google Scholar
  3. 3.
    Cyganek, B.: Circular Road Signs Recognition with Soft Classifiers. Integrated Computer-Aided Engineering 14(4), 323–343 (2007)Google Scholar
  4. 4.
    Cyganek, B.: Circular Road Signs Recognition with Affine Moment Invariants and the Probabilistic Neural Classifier. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4432, pp. 508–516. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Cyganek, B.: Road Signs Recognition by the Scale-Space Template Matching in the Log-Polar Domain. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4477, pp. 330–337. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Cyganek, B.: Real-Time Detection of the Triangular and Rectangular Shape Road Signs. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2007. LNCS, vol. 4678, pp. 744–755. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Cyganek, B.: Soft System for Road Sign Detection. Advances in Soft Computing 41, 316–326 (2007)CrossRefGoogle Scholar
  8. 8.
    Cyganek, B.: Committee Machine for Road-Signs Classification. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 583–592. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    DaimlerChrysler, The Thinking Vehicle (2002), http://www.daimlerchrysler.com
  10. 10.
    Escalera de, A., Armingol, J.A.: Visual Sign Information Extraction and Identification by Deformable Models. IEEE Tr. On Int. Transportation Systems 5(2), 57–68 (2004)CrossRefGoogle Scholar
  11. 11.
    Fang, C.-Y., Chen, S.-W., Fuh, C.-S.: Road-Sign Detection and Tracking. IEEE Transactions on Vehicular Technology 52(5), 1329–1341 (2003)CrossRefGoogle Scholar
  12. 12.
    Gao, X.W., Podladchikova, L., Shaposhnikov, D., Hong, K., Shevtsova, N.: Recognition of traffic signs based on their colour and shape. J. Vis.Comm. & Image Repr. (2005)Google Scholar
  13. 13.
    Maldonado-Bascón, S., Lafuente-Arroyo, S., Gil-Jiménez, P., Gómez-Moreno, H., López-Ferreras, F.: Road-Sign Detection and Recognition Based on Support Vector Machines. IEEE Tr. on Intelligent Transportation Systems 8(2), 264–278 (2007)CrossRefGoogle Scholar
  14. 14.
    Paclík, P., Novovičová, J., Duin, R.P.W.: Building road sign classifiers using a trainable similarity measure. IEEE Trans. on Int. Transportation Systems 7(3), 309–321 (2006)CrossRefGoogle Scholar
  15. 15.
    Road Signs and Signalization. Directive of the Polish Ministry of Infrastructure, Internal Affairs and Administration (Dz. U. Nr 170, poz. 1393) (2002)Google Scholar
  16. 16.

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Bogusław Cyganek
    • 1
  1. 1.AGHUniversity of Science and TechnologyKrakówPoland

Personalised recommendations