Entropy Based Diversity Measures in Evolutionary Mobile Robot Navigation

  • Tomás ArredondoV.
  • Wolfgang Freund
  • César Muñoz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5027)


In this paper we analyze entropy based measures in various motivation and environmental configurations of mobile robot navigation in complex environments. These entropy based measures are used to probe and predict various environmental and robot configurations that can provide for the emergence of highly fit robotic behaviors. The robotic system uses a neural network to evaluate measurements from its sensors in order to establish its next behavior. Genetic algorithms, fuzzy based fitness and Action-based Environment Modeling (AEM) all take a part toward training the robot. The research performed shows the utility of using these entropy based measures toward providing the robot with good training conditions.


Genetic Algorithm Window Size Entropy Measure Robot Navigation Motivation Diversity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arkin, R.: Behavior-Based Robotics. MIT Press, Cambridge (1998)Google Scholar
  2. 2.
    Park, H., Kim, E., Kim, H.: Robot Competition Using Gesture Based Interface. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 131–133. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Jensen, B., Tomatis, N., Mayor, L., Drygajlo, A., Siegwart, R.: Robots Meet Humans - Interacion in Public Spaces. IEEE Transactions on Industrial Electronics 52(6), 1530–1546 (2006)CrossRefGoogle Scholar
  4. 4.
    Arredondo, T., Freund, W., Muñoz, C., Navarro, N., Quirós, F.: Learning Performance in Evolutionary Behavior Based Mobile Robot Navigation. In: Mery, D., Rueda, L. (eds.) PSIVT 2007. LNCS, vol. 4872, pp. 811–820. Springer, Heidelberg (2007)Google Scholar
  5. 5.
    Huitt, W.: Motivation to learn: An overview. Educational Psychology Interactive (2001),
  6. 6.
    Tan, K.C., Goh, C.K., Yang, Y.J., Lee, T.H.: Evolving better population distribution and exploration in evolutionary multi-objective optimization. European Journal of Operations Research 171, 463–495 (2006)zbMATHCrossRefGoogle Scholar
  7. 7.
    Chalmers, D.J.: The evolution of learning: An experiment in genetic connectionism. In: Proceedings of the 1990 Connectionist Models Summer School, pp. 81–90. Morgan Kaufmann, San Mateo (1990)Google Scholar
  8. 8.
    YAKS simulator website:
  9. 9.
    Yamada, S.: Recognizing environments from action sequences using self-organizing maps. Applied Soft Computing 4, 35–47 (2004)CrossRefGoogle Scholar
  10. 10.
    Teuvo, K.: The self-organizing map. Proceedings of the IEEE 79(9), 1464–1480 (1990)Google Scholar
  11. 11.
    Cover, T., Thomas, J.: Elements of Information Theory. Wiley, New York (1991)zbMATHGoogle Scholar
  12. 12.
    Neelakanta, P.S.: Information-Theoretic Aspects of Neural Networks. CRC Press, Boca Raton (1999)zbMATHGoogle Scholar
  13. 13.
    Handmann, U., Kalinke, T., Tzomakas, C., Werner, M., Weelen, W.v.: An image processing system for driver assistance. Image and Vision Computing 18, 367–376 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Tomás ArredondoV.
    • 1
  • Wolfgang Freund
    • 1
  • César Muñoz
    • 1
  1. 1.Departamento de ElectrónicaUniversidad Técnica Federico Santa María, Valparaíso, ChileValparaísoChile

Personalised recommendations