Skip to main content

Dielectric Characterization of Biological Tissues: Constraints Related to Ex Vivo Measurements

  • Chapter
Sensors

Part of the book series: Lecture Notes Electrical Engineering ((LNEE,volume 21))

Abstract

Electrical Impedance Spectroscopy (EIS) has been previously reported as a technique for non-invasive assessment of electromagnetic tissue properties. In the frequency range up to 10 MHz, current conduction through tissue is mainly determined by the tissue structure, i.e. the extra- and intra-cellular compartments and the insulating cell membranes. Therefore, changes in the extra- and intra-cellular fluid volumes are reflected in the impedance spectra. E.I.S. systems include electrodes for the measurement of the impedance. Different electrodes configurations are used to measure bioelectric phenomenon for both macroscopic and microscopic approaches. Electrodes for macroscopic characterization are used for bio impedance measurement of a great biological tissue sample or organ. In this paper, we briefly review and discuss metrological aspects relating to electrical characterization of biological tissues based on the difficulty to compare between different author’s results. Experimental results obtained on different kinds of biological tissues (blood and bone) are presented and discussed as examples according to the influencing constraints specific to their physiological nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schwan H.P., Determination of biological impedances - in Physical techniques in biological research, Academic press (1963).

    Google Scholar 

  2. Rigaud B., Morucci J.P, and Chauveau N., Bioelectrical impedance techniques in medicine, Impedance spectrometry, Critical reviews in biomedical engineering ed. Bourne J.R., pp. 257–351 (1996).

    Google Scholar 

  3. Pethig R. and Kell D.B., The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology, Phys. Med. Biol. vol. 32(8), pp. 933–970, 1987.

    Article  Google Scholar 

  4. Foster K.R. and Schwan H.P., Dielectric properties of tissues, in Handbook of Biological Effects of Electromagnetic Fields (2éme edition) Ed :Polk C. et Postow E.,CRC Press 27–102 (1996).

    Google Scholar 

  5. Ackmann J.J. and Seitz M.A., Methods of complex impedance measurements in biologic tissue, CRC Crit. Rev. Biomed. Eng., vol. 11 pp. 281–311, 1984.

    Google Scholar 

  6. Foster K.R., Herman P. Schwan: A Scientist and Pioneer in Biomedical Engineering, Ann. Rev. Biomed. Eng. vol. 4, pp. 1–27, August 2002.

    Google Scholar 

  7. Foster K.R., “In Memorium : Herman P. Schwan [1915–2005]”, BioMedical Engineering OnLine, (4:21), (2005), doi:10.1186/1475-925X-4-21.

    Google Scholar 

  8. Geddes L.A. and Baker L.E., The specific resistance of biological material—a compendium of data for the biomedical engineer and physiologist, Med. biol. Eng., vol. 5 pp. 271–293, 1967.

    Article  Google Scholar 

  9. Gabriel S., Lau R.W., and Gabriel C., The dielectric properties of biological tissues: III Parametrics models for dielectric spectrum of tissues, Phys. Med. Biol., vol. 41, pp 2271–2293, 1996.

    Article  Google Scholar 

  10. Schwan H.P., Electrical properties of tissues and cell suspension, Adv. biol. med. physiol., vol. 5, pp. 147–209, 1957.

    Google Scholar 

  11. Geddes L.A., Electrodes and the Measurement of Bioelectric Events, Wiley-Interscience Wiley, New York (1972).

    Google Scholar 

  12. Misra D., Chabbra M., Epstein B., Mirotznik M., and Foster K., Noninvasive electrical characterization of materials at microwaves frequencies using an open ended coaxial line: Test of an improved calibration technique, IEEE Trans. Micr. Theo. Tech., vol. 38(1), pp. 8–14, 1990.

    Article  Google Scholar 

  13. Geddes L. and Sadler C., The specific resistance of blood at body temperature–Medical and Biological Engineering, pp. 336–339, May 1973.

    Google Scholar 

  14. Schwan H.P., Alternating current electrode polarisation, Biophysik, vol. 3, pp. 181–201, 1966.

    Article  Google Scholar 

  15. Mc Adams E.T. and Jossinet, J. Electrode-electrolyte impedance and polarisation, Innov. Tech. Biol. Med., vol. 12, pp. 11–20, 1991.

    Google Scholar 

  16. Olthuis W., Streekstra W., and Bergveld P., Theoretical and experimental determination of cell constants of planar-interdigitated electrolyte conductivity sensors, Sens. and Actuators (B 24-25) pp. 52–256, 1995.

    Google Scholar 

  17. Cook H.F., A comparison of the dielectric behaviour of pure water and human blood at microwave frequencies, Br. J. Appl. Phys., vol. 3, pp. 249–255, 1952.

    Article  Google Scholar 

  18. Bistolfi F., Biostructures and radiation order disorder, Ed Minerva Medica, Torino, (1991).

    Google Scholar 

  19. Fricke H., A mathematical treatment of the electric conductivity and capacity of dispersive systems II. The capacity of a suspension of conducting spheroids surrounded by a non conducting membrane for a current of low frequency, Phys. Rev., vol. 26, p. 678, 1925 (cité dans [FOST 96]).

    Article  Google Scholar 

  20. Lu Y., Yu J., and Ren Y., Dielectric properties of human red blood cell in suspension at radiofrequencies. Bioelectromagnetics, vol. 15, pp. 589–591, 1994.

    Article  Google Scholar 

  21. Sakamoto K., and Kanai H., Electrical characteristics of flowing blood, IEEE Trans. Biom. Eng., vol. BME 26(12), pp. 686–694, 1979.

    Article  Google Scholar 

  22. Schwan H.P., Electrical Properties of Blood and its Constituents: Alternating Current Spectroscopy., Blut, vol. 46, pp. 185–197, 1983.

    Article  Google Scholar 

  23. Hill D.W. and Thomson F.D. The effect of haematocrit on the resistivity of human blood at 37ˆC and 100 kHz., Med. Biol. Eng., pp 182–186, 1975.

    Google Scholar 

  24. Hewlett P., New technologies for wide impedance range measurements to 1.8 GHz, Hewlett Packard Product Note 4291–1.

    Google Scholar 

  25. Bussey H.E., Dielectric measurements in a shielded open circuit coaxial line, IEEE Trans. Instr. Meas., vol. IM29 (2), pp 120–124 ,1980.

    Article  Google Scholar 

  26. Jaspard F. and Nadi M., Open ended coaxial line for electrical characterization of human blood – 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 25–28 October 2001, Istanbul, Turkey.

    Google Scholar 

  27. Bianco B., Drago G.P., Marchesi M., Martini C., Mela S., and Ridella S., Measurements of complex dielectric constant of human sera and erythrocytes, IEEE Trans. Instr. Meas., vol. 28(4), pp 290–295, 1979 (cité dans [NEEL 83]).

    Google Scholar 

  28. Wei Y. – Private communication quoted in [2].

    Google Scholar 

  29. Jaspard F. and Nadi M., Dielectric properties of blood: an investigation of haematocrit dependence, Physiol. Meas., vol. 24 (17), pp. 137–147, 2003.

    Article  Google Scholar 

  30. Alison J.M., Sheppard R.J., Dielectric properties of human blood at microwave frequencies, Phys. Med. Biol., vol. 38, pp. 971–978, 1993.

    Article  Google Scholar 

  31. Cook H.F., Dielectric behaviour of human blood at microwave frequencies, Nature, vol. 168, pp. 247–248, 1951.

    Article  Google Scholar 

  32. Fricke H., A mathematical treatment of the electric conductivity and capacity of dispersive systems I. The electric conductivity of a suspension of homogeneous spheroids, Phys. Rev., vol. 24, p 575, 1924.

    Article  Google Scholar 

  33. Fricke H. and Curtis, H.J., The electric impedance of hemolyzed suspension of mammalian erythrocytes, J. Gen. Physiol., vol. 18 (6), p. 821, 1935.

    Article  Google Scholar 

  34. Neelakantaswamy P.S., Apsar K., Rajaratnam A., and Das N., A dielectric model of the human blood – Biomedizinische Technik, vol. 28, pp. 18–22, 1983.

    Google Scholar 

  35. Pauly H. and Schwan H.P., Dielectric properties of ion mobility in erythrocytes, Biophysica. vol. 6, pp. 621–639, 1966.

    Article  Google Scholar 

  36. Ulgen Y. and Sezdi M., Estimating the resistivity of the interior fluid of red blood cells using Fricke’s equation – Proceedings 19th International Conference IEEE/EMBS Chicago USA, pp. 2112–2115, 1997.

    Google Scholar 

  37. Cha K., Faris R.G., Brown E.F., Wilmore D.W., An electronic method for rapid measurement of haematocrit in blood samples, Physiol. Meas., vol. 15, pp.129–137, 1994.

    Google Scholar 

  38. Mouneimne Y., Spectroscopie électrique en milieu biologique. Etude du globule rouge. Etude de l’hydratation des protéines, Thése, Université Claude Bernard de Lyon, 1986.

    Google Scholar 

  39. Gabriel S, Lau R.W., and Gabriel C., The dielectric properties of biological tissues: II Measurements in the frequency range 10 Hz to 20 Ghz, Phys. Med. Biol., vol. 41, pp. 2251–2269, 1996.

    Article  Google Scholar 

  40. Chateaux J.F., and Nadi M., Mesure des propriétés diélectriques de l’os compact dans la bande 100 Hz-1 MHz : Prise en compte de l’anisotropie, Revue Internationale de Génie Electrique, vol. 9 (4–5), pp. 405–416, 2006.

    Article  Google Scholar 

  41. Chateaux J-F, Conception et réalisation d’une cellule de caractérisation des tissus biologiques par spectroscopie de bioimpédance dans la gamme fréquentielle [100 Hz – 1 MHz]. Application aux tissus osseux – Prise en compte de l’anisotropie’, PhD Thesis, Nancy University, (2000)

    Google Scholar 

  42. Kosterich J.D., Foster K.R., and Pollack S.R., Dielectric permittivity and electrical conductivity of fluid saturated bone, IEEE Trans. Biomed. Eng., vol. BME-30 (2), pp. 81–86, 1983.

    Article  Google Scholar 

  43. De Mercato G. and Sanchez F.G., Dielectric properties of fluid saturated bone: a comparison between diaphysis and epiphysis, Medical & Biological Engineering & Computing, Vol. 26, pp. 313–316, 1988.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nadi, M. (2008). Dielectric Characterization of Biological Tissues: Constraints Related to Ex Vivo Measurements. In: Mukhopadhyay, S., Huang, R. (eds) Sensors. Lecture Notes Electrical Engineering, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69033-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69033-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69030-6

  • Online ISBN: 978-3-540-69033-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics