Skip to main content
Book cover

Sensors pp 355–375Cite as

Affection Based Multi-robot Team Work

  • Chapter

Part of the book series: Lecture Notes Electrical Engineering ((LNEE,volume 21))

Abstract

Multi-robot task allocation, cooperation and interaction among the members of a team are very complex topics that need to be explored more. A task can be accomplished by a multi-robot team with required performance and reliability being operated with a proper cooperative plan. A proper cooperative plan includes an intelligent task allocation method in a productive and efficient manner such that the assigned task to the team is performed with a level of performance satisfaction. The robots need to be intelligent enough to dynamically adjust with changing workload either by changing actions or by making new cooperative plan. In this chapter, we describe proposed approaches to multi-robot task allocation and cooperation in a chronological way such that they can be studied and compared for future development with affection based augmentation. In respect of some drawbacks (like high communication overhead, dead lock, etc) with the existing approaches, we present the affection based task allocation and cooperation that has been used for a very few cases. We also present the complexity of the affective method and give some hints to compensate the complexity problems. Later on, we present also a stochastic approach for affection based task allocation, cooperation and interaction for a multi-robot team.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Picard, R. W., “Affective computing”, Cambridge: MIT Press, 2000, ISBN 0-262-16170-2.

    Google Scholar 

  2. Nair, R., Tambe, M., Marsella, S., “The role of emotions in multi-agent teamwork: A preliminary investigation”, in Fellous, J-M., Arbib, M. (Eds), Who needs emotions: the brain meets the robots. Oxford: Oxford University Press, 2005.

    Google Scholar 

  3. Scheutz, M., “Useful roles of emotions in artificial agents: A case study from artificial life”, Proceedings of AAAI conference, pp. 42–48, July 2004.

    Google Scholar 

  4. Baghaei, K. R., Agah, A., “Task allocation methodologies for multi-robot systems”, Technical Report ITTC-FY2003-TR-20272-01, Information and Telecommunication Technology Center, University of Kansas, 2002.

    Google Scholar 

  5. Gage, A., “Multi-robot task allocation using affect”, PhD Thesis, 2004, University of South Florida.

    Google Scholar 

  6. Gerkey, B. P., Mataric, M. J., “Pusher-watcher: an approach to fault-tolerant tightly-coupled robot coordination”, Proceedings of International Conference on Robotics and Automation. 2002, IEEE Catalog Number 02CH37292, ISBN 0-7803-7272-7, 464–469.

    Google Scholar 

  7. Gerkey, B. P., Mataric, M. J., “Sold!: Auction methods for multirobot coordination”, IEEE Transactions on Robotics and Automation 2002, 18, 758–768.

    Article  Google Scholar 

  8. Gerkey, B. P., Mataric, M. J., “Multirobot task allocation: analyzing the complexity and optimality of key architectures”, Proceedings of International Conference on Robotics and Automation. 2003, IEEE Catalog Number 03CH37422, ISBN 0-7803-7736-2, 3862–3868.

    Google Scholar 

  9. Parker, L. E., “Alliance: architecture for fault tolerant and multirobot cooperation”, IEEE Transactions on Robotics and Automation 1998, 14, 220–240.

    Article  Google Scholar 

  10. Parker, L. E., “Alliance: An architecture for fault tolerant, cooperative control of heterogeneous mobile robots”, Proceedings of International Conference on Intelligent Robots and Systems (IROS’04). 1994, IEEE Catalog Number 94CH3447-0, ISBN 0-7803-1933-8, 776–783.

    Google Scholar 

  11. Chaimowicz, L., Campos, M. F. M., Kumar, V., “Dynamic role assignment for cooperative robots”, Proceedings of International Conference on Robotics and Automation. 2002, IEEE Catalog Number 02CH37292, ISBN 0-7803-7272-7, 293–298.

    Google Scholar 

  12. Werger, B. B., Mataric, M. J., “Broadcast of local eligibility for multi-target observation”, Proceedings of DARS 4, pp. 347–356, Oct. 2000.

    Google Scholar 

  13. Werger, B. B., Mataric, M. J., “From insect to internet: Situated control for networked robot teams”, Annals of Mathematics and Artificial Intelligence 2001, 31, 173–198.

    Article  Google Scholar 

  14. Ostergaard, E. H., Mataric, M. J., Sukhatme, G. S., “Distributed multi-robot task allocation for emergency handling”, Proceedings of International Conference on Robotics and Systems. 2001, IEEE Catalog Number 01CH37180, ISBN 0-7803-6612-3, 821–826.

    Google Scholar 

  15. Alami, R., Fleury, S., Herrb, M., Ingrand, F., Robert, F., “Multi-robot cooperation in the MARTHA project”, IEEE Robotics and Automation Magazine 1998, 5, 36–47.

    Article  Google Scholar 

  16. Simmons, R., Singh, S., Hershberger, D., Ramos, J., Smith, T., “First results in the coordination of heterogeneous robots for large-scale assembly”, Lecture Notes in Control and Information Sciences 2000, 271, 323–332.

    Article  Google Scholar 

  17. Farinelli, A., Iocchi, L., Nardi, D., “Multi-robot system: A Classification focused on coordination”, IEEE Transactions on System Man and Cybernetics 2004, part B, 2015–2028.

    Google Scholar 

  18. Stone, P., “Layered learning in multiagent system: A winning approach to robotic soccer”, MIT Press, 2000, ISBN 0-262-19438.

    Google Scholar 

  19. Dudek, G., Jenkin, M., Milios, E., Wilkes, D., “A taxonomy for multi-agent robotics”, Autonomous Robots 1996, 3(4), 375–397.

    Article  Google Scholar 

  20. Dudek, G., Jenkin, M., Milios, E., “A taxonomy of multirobot systems”, in Tucker, B., Lynne, E. P. (Eds), Robot Teams: From Diversity to Polymorphism, Natick, MA, Canada: A K Peters, Ltd., 2002.

    Google Scholar 

  21. Minsky, M., “The society of mind”, New York: Simon & Schuster, Inc., 1988, ISBN 0-671-60740-5.

    Google Scholar 

  22. Kenyon, S. H., “The need for emotional architectures in practical robots”, [online] http://stardec.ascc.neu.edu/∼kenyon/personal/papers/emotional_arch _robot_v1.pdf.

    Google Scholar 

  23. Levenson, R. W., “Emotion and the automatic nervous system: A prospectus for research on autonomic specificity”, in Wagner, H. L. (Ed.), Social Psychophysiology and Emotion, Chichester: John Wiley & Son, 1988.

    Google Scholar 

  24. Oatley, K., Johnson-Laird, P. N., “Towards a cognitive theory of emotions”, Cognitive and Emotion 1987, 1(1), 29–50.

    Article  Google Scholar 

  25. Murphy, R. R., Lisetti, C. L., Tardif, R., Irish, L., Gage, A., “Emotion-based control of cooperating heterogeneous mobile robots”, IEEE Transactions on Robotics and Automation 2002, 18(5), 744–757.

    Article  Google Scholar 

  26. de Freitas, J. S., Gudwin, R. R., Queiroz, J., “Emotion in artificial intelligence and artificial life research: Facing Problems”, [online] http://www.dca.fee.unicamp.br/ projects/artcog/files/freitas-iva05-extended.pdf.

    Google Scholar 

  27. Brave, S., Nass, C., “Emotion in human-computer interaction”, in Sears, A., Jacko, J. A. (Eds), The human-computer interaction handbook: Fundamentals, evolving technologies and emerging applications, NJ, USA: Lawrence Erlbaum Associates, Inc., 2002.

    Google Scholar 

  28. Breazeal, C., “Emotion and sociable humanoid robots”, International Journal of Human-Computer Studies 2003, 59, 119–155.

    Article  Google Scholar 

  29. Custòdio, L., Ventura, R., Pinto-Ferreira, C., “Artificial emotions and emotion-based control systems”, Proceedings of 7th International Conference on Emerging Technologies and Factory Automation. 1999, IEEE Catalog Number 99TH8467, ISBN 0-7803-5670-3, 1415–1420.

    Google Scholar 

  30. McCauley, T. L., Franklin, S., “An architecture for emotion”, Proceedings of AAAI Fall Symposium, pp. 122–127, 1998.

    Google Scholar 

  31. Nehaniv, C., “The first, second and third person emotions: Grounding adaptation in a biological and social world”, 5th International Conference of the society for adaptive behavior (SAB), August 1998. http://www.ofai.at/∼paolo.petta/conf/sab98/final/nehaniv.ps.gz).

    Google Scholar 

  32. Gadanho, S., Hallam, J., “Emotion-triggered learning in autonomous robot control”, Cybermetics and Systems 2001, 32, 531–559.

    Article  MATH  Google Scholar 

  33. Plutchik, R., “A general psychoevolutionary theory of emotion”, in Plucthik, R. and Kellerman, H. (Eds), Emotion: Theory, Research and Experience, Vol. 1, New York: Academic Press, 1980.

    Google Scholar 

  34. Ortony, A., Clore, G. L., Collins, A., “The Cognitive Structure of Emotions”, Cambridge, MA: Cambridge University Press, 1988, ISBN 0-521-38664-0.

    Google Scholar 

  35. Michaud, F., Robichaud, E., Audet, J., “Using motives and artificial emotions for prolonged activity of a group of autonomous robots”, Emotional and Intelligent II: The Tangled Knot of Social Cognition-AAAI Fall Symposium, Technical Report FS-01-02, pp. 85–90, Nov. 2001.

    Google Scholar 

  36. Mook, D. G., “Motivation: The organization of action”, New York: W. W. Norton & Co.

    Google Scholar 

  37. Cañamero, L., “Emotion understanding from the perspective of autonomous robots research”, Neural Networks 2005, 18, 445–455.

    Article  Google Scholar 

  38. Schneider-Fontan, M., Mataric, M., “Territorial multi-robot task division”, IEEE Transaction on Robotics and Automation 1998, 14, 815–822.

    Article  Google Scholar 

  39. Balch, T. R., Arkin, R. C., “Communication in reactive multi-agent robotic systems”, Autonomous Robots 1994, 1, 1–25.

    Article  Google Scholar 

  40. MacLennan, B., “Synthetic ethology: An approach to the study of communication”, in Langton, C. G., Taylor, C., Farmer, J. D., Rasmussen, S. (Ed.), Artificial Life II: The Second Workshop on Synthesis and Simulation of Living Systems (pp. 631–658). Redwood City, CA: Addison-Wesley, 1991.

    Google Scholar 

  41. Maes, P., “Modeling adaptive autonomous agents”, in Langton, C. G. (Ed.), Artificial Life: An overview (pp. 176–181). Cambridge, MA: The MIT Press, 1995.

    Google Scholar 

  42. Velásquez, J. D., “Modeling emotions and other motivations in synthetic agents”, Proceedings of AAAI Conference, pp. 10–15, July 1997.

    Google Scholar 

  43. Elliott, C., “The Affective Reasoner: A process model of emotions in a multi-agent system”, PhD thesis, Institute for the Learning Sciences, Evanston, IL: Northwestern University, 1992.

    Google Scholar 

  44. El-Nasr, M. S., Ioerger, T., Yen, J., “FLAME: Fuzzy logic adaptive model of emotions”, Autonomous Agents and Multi-Agent Systems 2000, 3(3), 219–257.

    Article  Google Scholar 

  45. Reilly, W. S., Bates, J., “Building emotional agents”, Technical Rep. CMU-CS-92-143, Pittsburgh, PA: Carnegie Mellon University, 1992.

    Google Scholar 

  46. Gratch, J., “Émile: Marshalling passions in training and education”, Proceedings of the 4th International Conference on Autonomous Agents, pp. 325–332, June 2000.

    Google Scholar 

  47. Bui, T. D., Heylen, D., Poel, M., Nijholt, A., “ParleE: An adaptive plan based event appraisal model of emotions”, Lecture Notes on Artificial Intelligence 2002, 2479, 129–143.

    MathSciNet  Google Scholar 

  48. Arun, C., “A computational architecture to model human emotions”, Proceedings of International Conference on Intelligent Information System, pp. 86–89, Dec. 1997.

    Google Scholar 

  49. Kühnlenz, K., Buss, M., “Towards an emotion core based on a hidden Markov model”, Proceedings of the 13th International Workshop on robot and human interactive communication (ROMAN’04), pp. 119–124, Sept. 2004.

    Google Scholar 

  50. Banik, S. C., Watanabe, K., Izumi, K., “Intelligent behavior generation of job distributed mobile robots through emotional interaction”, Proceedings of 13th International Conference on Advanced Robotics, pp. 1215–1219, Aug. 2007.

    Google Scholar 

  51. Banik, S. C., Watanabe, K., Izumi, K., “Task allocation with a cooperative plan for an emotionally intelligent system of multi-robots”, SICE Annual Conference, pp. 1004–1010, Sept. 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Banik, S.C., Watanabe, K., Habib, M.K., Izumi, K. (2008). Affection Based Multi-robot Team Work. In: Mukhopadhyay, S., Huang, R. (eds) Sensors. Lecture Notes Electrical Engineering, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69033-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69033-7_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69030-6

  • Online ISBN: 978-3-540-69033-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics