Comparison of Intracardiac Cell Transplantation: Autologous Skeletal Myoblasts Versus Bone Marrow Cells

  • A. G. Zenovich
  • B. H. Davis
  • D. A. Taylor
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 180)


Anincreasing number of patients living with cardiovascular disease (CVD) and still unacceptably high mortality created an urgent need to effectively treat and prevent disease-related events. Within the past 5 years, skeletal myoblasts (SKMBs) and bone marrow (or blood)-derived mononuclear cells (BMNCs) have demonstrated preclinical efficacy in reducing ischemia and salvaging already injured myocardium, and in preventing left ventricular (LV) remodeling, respectively. These findings have been translated into clinical trials, so far totaling over 200 patients for SKMBs and over 800 patients for BMNCs. These safety/feasibility and early phase II studies showed promising but somewhat conflicting symptomatic and functional improvements, and some safety concerns have arisen. However, the patient population, cell type, dose, time and mode of delivery, and outcome measures differed, making comparisons problematic. In addition, the mechanisms through which cells engraft and deliver their beneficial effects remain to be fully elucidated. It is now time to critically evaluate progress made and challenges encountered in order to select not only the most suitable cells for cardiac repair but also to define appropriate patient populations and outcome measures. Reiterations between bench and bedside will increase the likelihood of cell therapy success, reduce the time to development of combined of drug- and cell-based disease management algorithms, and offer these therapies to patients to achieve a greater reduction of symptoms and allow for a sustained improvement of quality of life.


Acute myocardial infarction Bone marrow Cell therapy Heart failure Stem cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbate A, Bussani R, Amin MS, et al (2006) Acute myocardial infarction and heart failure: role of apoptosis. Int J Biochem Cell Biol 38:1834–1840PubMedCrossRefGoogle Scholar
  2. Abraham M, Henrikson C, Tung L, et al (2005) Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation. Circ Res 97:159–167PubMedCrossRefGoogle Scholar
  3. Adams C, Brantner V (2006) Estimating the cost of new drug development: is it really 802 million dollars? Health Aff 25:420–428CrossRefGoogle Scholar
  4. Agbulut O, Vandervelde S, Al Attar N, et al (2004) Comparison of human skeletal myoblasts and bone marrow-derived CD133+ progenitors for the repair of infarcted myocardium. J Am Coll Cardiol 44:458–463PubMedCrossRefGoogle Scholar
  5. Aicher A, Brenner W, Zuhayra M, et al (2003) Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 107:2134–2139PubMedCrossRefGoogle Scholar
  6. Amado L, Saliaris A, Schuleri K, et al (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci USA 102:11474–11479PubMedCrossRefGoogle Scholar
  7. Anand I, McMurray J, Cohn J, et al (2004) Long-term effects of darusentan on left-ventricular remodelling and clinical outcomes in the Endothelin A Receptor Antagonist Trial in Heart Failure (EARTH): randomised, double-blind, placebo-controlled trial. Lancet 364:347–354PubMedCrossRefGoogle Scholar
  8. Anversa P, Nadal-Ginard B (2002) Myocyte renewal and ventricular remodelling. Nature 415:240–243PubMedCrossRefGoogle Scholar
  9. Appel LJ, Brands MW, Daniels SR, Karanja N, Elmer PJ, Sacks FM (2006) Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association. Hypertension 47:296–308PubMedCrossRefGoogle Scholar
  10. Appels N, Beijnen J, Schellens J (2005) Development of farnesyl transferase inhibitors: a review. Oncologist 18:565–578CrossRefGoogle Scholar
  11. Assmus B, Schachinger V, Teupe C, et al (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106:3009–3017PubMedCrossRefGoogle Scholar
  12. Assmus B, Honold J, Schachinger V, et al (2006) Trancoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 355:1222–1232PubMedCrossRefGoogle Scholar
  13. Atkins B, Hutcheson K, Hueman M, et al (1999a) Reversing post-MI dysfunction: improved myocardial performance after autologous skeletal myoblast transfer to infarcted rabbit heart. Circ Suppl 100:I-838Google Scholar
  14. Atkins BZ, Hueman MT, Meuchel JM, et al (1999b) Myogenic cell transplantation improves in vivo regional performance in infarcted rabbit myocardium. J Heart Lung Transplant 18:1173–1180PubMedCrossRefGoogle Scholar
  15. Atkins BZ, Lewis CW, Kraus WE, et al (1999c) Intracardiac transplantation of skeletal myoblasts yields two populations of striated cells in situ. Ann Thorac Surg 67:124–129PubMedCrossRefGoogle Scholar
  16. Bartunek J, Vanderheyden M, Vandekerckhove B, et al (2005) Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation 112:I178–183PubMedGoogle Scholar
  17. Bartunek J, Dimmeler S, Drexler H, et al (2006) The consensus of the task force of the European Society of Cardiology concerning the clinical investigation of the use of autologous adult stem cells for repair of the heart. Eur Heart J 27:1338–1340PubMedCrossRefGoogle Scholar
  18. Beltrami AP, Urbanek K, Kajstura J, et al (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344:1750–1757PubMedCrossRefGoogle Scholar
  19. Beltrami AP, Barlucchi L, Torella D, et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776PubMedCrossRefGoogle Scholar
  20. Bertrand ME (2004) Provision of cardiovascular protection by ACE inhibitors: a review of recent trials. Curr Med Res Opin 20:1559–1569PubMedCrossRefGoogle Scholar
  21. Bittira B, Shum-Tim D, Al-Khaldi A, et al (2003) Mobilization and homing of bone marrow stromal cells in myocardial infarction. Eur J Cardiothorac Surg 24:393–398PubMedCrossRefGoogle Scholar
  22. Blatt A, Cotter G, Leitman M, et al (2005) Intracoronary administration of autologous bone marrow mononuclear cells after induction of short ischemia is safe and may improve hibernation and ischemia in patients with ischemic cardiomyopathy. Am Heart J 150:981–987CrossRefGoogle Scholar
  23. Boyle JA, Schulman SP, Hare JM (2006) Stem cell therapy for cardiac repair: ready for the next step. Circulation 114:339–352PubMedCrossRefGoogle Scholar
  24. Britten MB, Abolmaali ND, Assmus B, et al (2003) Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation 108:2212–2218PubMedCrossRefGoogle Scholar
  25. Camirand G, Rousseau J, Ducharme M, et al (2004) Novel Duchenne muscular dystrophy treatment through myoblast transplantation tolerance with anti-CD45RB, anti-CD154 and mixed chimerism. Am J Transplant 4:1255–1265PubMedCrossRefGoogle Scholar
  26. Chachques JC, Grandjean PA, Tommasi JJ, et al (1987) Dynamic cardiomyoplasty: a new approach to assist chronic myocardial failure. Life Support Syst 5:323–327PubMedGoogle Scholar
  27. Chachques JC, Herreros J, Trainini J, et al (2004) Autologous human serum for cell culture avoids the implantation of cardioverter-defibrillators in cellular cardiomyoplasty. Int J Cardiol 95[Suppl 1]:S29–S33PubMedCrossRefGoogle Scholar
  28. Chaitman B (2006) Ranolazine for the treatment of chronic angina and potential use in other cardiovascular conditions. Circulation 113:2462–2472PubMedCrossRefGoogle Scholar
  29. Chen SL, Fang WW, Ye F, et al (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94:92–95PubMedCrossRefGoogle Scholar
  30. Chiu RC, Zibaitis A, Kao RL (1995) Cellular cardiomyoplasty:myocardial regeneration with satellite cell implantation. Ann Thorac Surg 60:12–18PubMedGoogle Scholar
  31. Cleland JG, Freemantle N, Coletta AP, et al (2006) Clinical trials update from the American Heart Association: REPAIR-AMI, ASTAMI, JELIS, MEGA, REVIVE-II, SURVIVE, and PROACTIVE. Eur J Heart Fail 8:105–110PubMedCrossRefGoogle Scholar
  32. Cohn JN (2002) Lessons learned from the valsartan heart failure trial (Val-HeFT): angiotensin receptor blockers in heart failure. Am J Cardiol 90:992–993PubMedCrossRefGoogle Scholar
  33. Dib N, Michler R, Pagani F, et al (2005) Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: four-year follow-up. Circulation 112:1748–1755PubMedCrossRefGoogle Scholar
  34. Doggrell SA (2005) CHARMed—the effects of candesartan in heart failure. Expert Opin Pharmacother 6:513–516PubMedCrossRefGoogle Scholar
  35. Dohmann H, Perin E, Borojevic R, et al (2005) Sustained improvement in symptoms and exercise capacity up to six months after autologous transendocardial transplantation of bone marrow mononuclear cells in patients with severe ischemic heart disease (in Portuguese). Arq Bras Cardiol 84:360–366PubMedCrossRefGoogle Scholar
  36. Erices A, Conget P, Minguell J (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–242PubMedCrossRefGoogle Scholar
  37. Fadini G, Coracina A, Baesso I, et al (2006) Peripheral blood CD34+KDR+ endothelial progenitor cells are determinants of subclinical atherosclerosis in a middle-aged general population. Stroke 37:2277–2282PubMedCrossRefGoogle Scholar
  38. Fernandez-Aviles F, San Roman JA, Garcia-Frade J, et al (2004) Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ Res 95:742–748PubMedCrossRefGoogle Scholar
  39. Ferreira S, Winck J, Bettencourt P, et al (2006) Heart failure and sleep apnoea: to sleep perchance to dream. Eur J Heart Fail 8:227–236PubMedCrossRefGoogle Scholar
  40. Fleischer K, Goldschmidt-Clermont P, Fonger J, et al (1996) One-month histologic response of transmyocardial laser channels with molecular intervention. Ann Thorac Surg 62:1051–1058PubMedCrossRefGoogle Scholar
  41. Fuchs S, Baffour R, Zhou Y, et al (2001) Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol 37:1726–1732PubMedCrossRefGoogle Scholar
  42. Fuchs S, Satler LF, Kornowski R, et al (2003) Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease: a feasibility study. J Am Coll Cardiol 41:1721–1724PubMedCrossRefGoogle Scholar
  43. Fuchs S, Kornowski R, Weisz G, et al (2006) Safety and feasibility of transendocardial autologous bone marrow cell transplantation in patients with advanced heart disease. Am J Cardiol 97:823–829PubMedCrossRefGoogle Scholar
  44. Galili N, Raza A (2006) Immunomodulatory drugs in myelodysplastic syndromes. Expert Opin Investig Drugs 15:805–813PubMedCrossRefGoogle Scholar
  45. Galinanes M, Loubani M, Davies J, et al (2004) Autotransplantation of unmanipulated bone marrow cells into scarred myocardium is safe and enhances cardiac function in humans. Cell Transplant 13:7–13PubMedGoogle Scholar
  46. Gavira J, Herreros J, Perez A, et al (2006) Autologous skeletal myoblast transplantation in patients with nonacute myocardial infarction: 1-year follow-up. J Thorac Cardiovasc Surg 131:799–804PubMedCrossRefGoogle Scholar
  47. Gemzell-Danielsson K (2006) Effects of levonorgestrel on ovarian function when used for emergency contraception. Minerva Ginecol 58:205–207PubMedGoogle Scholar
  48. Gnecchi M, He H, Noiseux N, et al (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 20:661–669PubMedCrossRefGoogle Scholar
  49. Grigoriadis A, Heersche J, Aubin J (1988) Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J Cell Biol 106:2139–2151PubMedCrossRefGoogle Scholar
  50. Haffner SM (2002) Can reducing peaks prevent type 2 diabetes: implication from recent diabetes prevention trials. Intl J Clin Pract Suppl 129:33–39Google Scholar
  51. Hamano K, Nishida M, Hirata K, et al (2001) Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease: clinical trial and preliminary results. Jpn Circ J 65:845–847PubMedCrossRefGoogle Scholar
  52. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695PubMedCrossRefGoogle Scholar
  53. Hata H, Matsumiya G, Miyagawa S, et al (2006) Grafted skeletal myoblast sheets attenuate myocardial remodeling in pacing-induced canine heart failure model. J Thorac Cardiovasc Surg 132:918–924PubMedCrossRefGoogle Scholar
  54. Haynesworth SE, Baber MA, Caplan AI (1992) Cell surface antigens on human marrow-derived mesynchemal cells are detected by monoclonal antibodies. Bone Marrow Transplant 13:69–80Google Scholar
  55. Henning RJ, Abu-Ali H, Balis JU, et al (2004) Human umbilical cord blood mononuclear cells for the treatment of acute myocardial infarction. Cell Transplant 13:729–739PubMedGoogle Scholar
  56. Hernandez AF, Velazquez EJ, Solomon SD, et al (2005) Left ventricular assessment in myocardial infarction: the VALIANT registry. Arch Intern Med 165:2162–2169PubMedCrossRefGoogle Scholar
  57. Herreros J, Prosper F, Perez A, et al (2003) Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction. Eur Heart J 24:2012–2020PubMedCrossRefGoogle Scholar
  58. Hiasa K, Egashira K, Kitamoto S, et al (2004) Bone marrow mononuclear cell therapy limits myocardial infarct size through vascular endothelial growth factor. Basic Res Cardiol 99:165–172PubMedCrossRefGoogle Scholar
  59. Hidalgo M, Rodriguez G, Kuhn J, et al (1998) A Phase I and pharmacological study of the glutamine antagonist acivicin with the amino acid solution aminosyn in patients with advanced solid malignancies. Clin Cancer Res 4:2763–2770PubMedGoogle Scholar
  60. Hill JM, Zalos G, Halcox JP, et al (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600PubMedCrossRefGoogle Scholar
  61. Hirata Y, Sata M, Motomura N, et al (2005) Human umbilical cord blood cells improve cardiac function after myocardial infarction. Biochem Biophys Res Commun 327:609–614PubMedCrossRefGoogle Scholar
  62. Horackova M, Arora R, Chen R, et al (2004) Cell transplantation for treatment of acute myocardial infarction: unique capacity for repair by skeletal muscle satellite cells. Am J Physiol Heart Circ Physiol 287:H1599–1608PubMedCrossRefGoogle Scholar
  63. Hutcheson KA, Atkins BZ, Hueman MT, et al (2000) Comparing the benefits of cellular cardiomyoplasty with skeletal myoblasts or dermal fibroblasts on myocardial performance. Cell Transplant 9:359–368PubMedGoogle Scholar
  64. Ince H, Petzsch M, Rehders T, et al (2004) Transcatheter transplantation of autologous skeletal myoblasts in postinfarction patients with severe left ventricular dysfunction. J Endovasc Ther 11:695–704PubMedCrossRefGoogle Scholar
  65. Jackson KA, Majka SM, Wang H, et al (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107:1395–1402PubMedGoogle Scholar
  66. Janssens S, Dubois C, Bogaert J, et al (2006) Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367:113–121PubMedCrossRefGoogle Scholar
  67. Jayaram H, Lui M, Plowman J, et al (1990) Oncolytic activity and mechanism of action of a novel L-cysteine derivative, L-cysteine, ethyl ester, S-(N-methylcarbamate) monohy-drochloride. Cancer Chemother Pharmacol 26:88–92PubMedGoogle Scholar
  68. Jerosch-Herold M, Wilke N, Stillman A (1998) Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys 25:73–84PubMedCrossRefGoogle Scholar
  69. Jiang XX, Zhang Y, Liu B, et al (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105:4120–4126PubMedCrossRefGoogle Scholar
  70. Jiang Y, Jahagirdar BN, Reinhardt RL, et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49PubMedCrossRefGoogle Scholar
  71. Jong P, Yusuf S, Rousseau MF, et al (2003) Effect of enalapril on 12-year survival and life expectancy in patients with left ventricular systolic dysfunction: a follow-up study. Lancet 361:1843–1848PubMedCrossRefGoogle Scholar
  72. Jost A, Rauch B, Hochadel M, et al (2005) Beta-blocker treatment of chronic systolic heart failure improves prognosis even in patients meeting one or more exclusion criteria of the MERIT-HF study. Eur Heart J 26:2689–2697PubMedCrossRefGoogle Scholar
  73. Juonala M, Viikari J, Rasanen L, et al (2006) Young adults with family history of coronary heart disease have increased arterial vulnerability to metabolic risk factors: the Cardiovascular Risk in Young Finns Study. Arterioscler Thromb Vasc Biol 26:1376–1382PubMedCrossRefGoogle Scholar
  74. Kalka C, Masuda H, Takahashi T, et al (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A 97:3422–3427PubMedCrossRefGoogle Scholar
  75. Katritsis DG, Sotiropoulou PA, Karvouni E, et al (2005) Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc Interv 65:321–329PubMedCrossRefGoogle Scholar
  76. Kaur K, Sharma A, Singal P (2006) Significance of changes in TNF-alpha and IL-10 levels in the progression of heart failure subsequent to myocardial infarction. Am J Physiol Heart Circ Physiol 291:H106–113PubMedCrossRefGoogle Scholar
  77. Kawada H, Fujita J, Kinjo K, et al (2004) Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood 104:3581–3587PubMedCrossRefGoogle Scholar
  78. Kawamoto A, Gwon HC, Iwaguro H, et al (2001) Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103:634–637PubMedGoogle Scholar
  79. Kim B, Tian H, Prasongsukarn K, et al (2005) Cell transplantation improves ventricular function after a myocardial infarction: a preclinical study of human unrestricted somatic stem cells in a porcine model. Circulation 112[9 Suppl]:I96–I104PubMedGoogle Scholar
  80. Kinnaird T, Stabile E, Burnett M, et al (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109:1543–1549PubMedCrossRefGoogle Scholar
  81. Kirito K, Fox N, Komatsu N, et al (2005) Thrombopoietin enhances expression of vascular endothelial growth factor (VEGF) in primitive hematopoietic cells through induction of HIF-1alpha. Blood 105:4258–4263PubMedCrossRefGoogle Scholar
  82. Kocher AA, Schuster MD, Szabolcs MJ, et al (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7:430–436PubMedCrossRefGoogle Scholar
  83. Koh GY, Klug MG, Soonpaa MH, et al (1993) Differentiation and long-term survival of C2C12 myoblast grafts in heart. J Clin Invest 92:1548–1554PubMedGoogle Scholar
  84. Kohin S, Stary CM, Howlett RA, et al (2001) Preconditioning improves function and recovery of single muscle fibers during severe hypoxia and reoxygenation. Am J Physiol Cell Physiol 281:C142–146PubMedGoogle Scholar
  85. Korbling M, Estrov Z, Champlin R (2003) Adult stem cells and tissue repair. Bone Marrow Transplant 32[Suppl 1]:S23–24PubMedCrossRefGoogle Scholar
  86. Kotlyar E, Vita J, Winter M, et al (2006) The relationship between aldosterone, oxidative stress, and inflammation in chronic, stable human heart failure. J Card Fail 12:122–127PubMedCrossRefGoogle Scholar
  87. Krumholz HM, Currie PM, Riegel B, et al (2006) AHA Scientific statement. A taxonomy for disease management. A scientific statement from the American Heart Association Disease Management Taxonomy Writing Group. Circulation 114:1432–1445PubMedCrossRefGoogle Scholar
  88. Kuethe F, Richartz BM, Sayer HG, et al (2004) Lack of regeneration of myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans with large anterior myocardial infarctions. Int J Cardiol 97:123–127PubMedCrossRefGoogle Scholar
  89. Lambert G (2005) Preclinical neuropharmacology of naratriptan. CNS Drug Rev 11:289–316PubMedCrossRefGoogle Scholar
  90. Laugwitz KL, Moretti A, Lam J, et al (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433:647–653PubMedCrossRefGoogle Scholar
  91. LeGrand C (2000) Fifty-third World Health Assembly: impact on cardiovascular disease. Can J Cardiol 16:857–859PubMedGoogle Scholar
  92. Lenzen MJ, Boersma E, Reimer WJ, et al (2005) Under-utilization of evidence-based drug treatment in patients with heart failure is only partially explained by dissimilarity to patients enrolled in landmark trials: a report from the Euro Heart Survey on Heart Failure. Eur Heart J 26:2706–2713PubMedCrossRefGoogle Scholar
  93. Leor J, Guetta E, Feinberg M, et al (2006) Human umbilical cord blood-derived CD133+ cells enhance function and repair of the infarcted myocardium. Stem Cells 24:772–780PubMedCrossRefGoogle Scholar
  94. Levy D, Kenchaiah S, Larson MG, et al (2002) Long-term trends in the incidence of and survival with heart failure. N Engl J Med 347:1397–1402PubMedCrossRefGoogle Scholar
  95. Liu J, Hu Q, Wang Z, et al (2004) Autologous stem cell transplantation for myocardial repair. Am J Physiol Heart Circ Physiol 287:H501–511PubMedCrossRefGoogle Scholar
  96. Lunde K, Solheim S, Aakhus S, et al (2006) Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 355:1199–1209PubMedCrossRefGoogle Scholar
  97. Ma N, Stamm C, Kaminski A, et al (2005) Human cord blood cells induce angiogenesis following myocardial infarction in NOD/SCID-mice. Cardiovasc Res 66:45–54PubMedCrossRefGoogle Scholar
  98. Makino S, Fukuda K, Miyoshi S, et al (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103:697–705PubMedGoogle Scholar
  99. Mann D, McMurray J, Packer M, et al (2004) Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 109:1594–1602PubMedCrossRefGoogle Scholar
  100. Mark D, Nelson C, Anstrom K, et al (2006) Cost-effectiveness of defibrillator therapy or amiodarone in chronic stable heart failure: results from the Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT). Circulation 114:135–142PubMedCrossRefGoogle Scholar
  101. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495PubMedCrossRefGoogle Scholar
  102. Menasche P (2006) Late-breaking clinical trials III. First randomized placebo-controlled myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial. Presented at the Scientific Sessions of the American Heart Association, 15 November 2006, ChicagoGoogle Scholar
  103. Menasche P, Hagege AA, Vilquin JT, et al (2003) Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 41:1078–1083PubMedCrossRefGoogle Scholar
  104. Meyer G, Wollert K, Lotz J, et al (2006) Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 113:1287–1294PubMedCrossRefGoogle Scholar
  105. Miller LW, Missov ED (2001) Epidemiology of heart failure. Cardiol Clin 19:547–555PubMedCrossRefGoogle Scholar
  106. Misao Y, Takemura G, Arai M, et al (2006) Importance of recruitment of bone marrow-derived CXCR4+ cells in post-infarct cardiac repair mediated by G-CSF. Cardiovasc Res 71:455–465PubMedCrossRefGoogle Scholar
  107. Miyagawa S, Sawa Y, Sakakida S, et al (2005) Tissue cardiomyoplasty using bioengineered contractile cardiomyocyte sheets to repair damaged myocardium: their integration with recipient myocardium. Transplantation 80:1586–1595PubMedCrossRefGoogle Scholar
  108. Moss AJ (2003) MADIT-I and MADIT-II. J Cardiovasc Electrophysiol 14:S96–S98PubMedCrossRefGoogle Scholar
  109. Moss AJ, Zareba W, Hall WJ, et al (2002) Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med 346:877–883PubMedCrossRefGoogle Scholar
  110. Mouquet F, Pfister O, Jain M, et al (2005) Restoration of cardiac progenitor cells after myocardial infarction by self-proliferation and selective homing of bone marrow-derived stem cells. Circ Res 97:1090–1092PubMedCrossRefGoogle Scholar
  111. Murry CE, Kay MA, Bartosek T, et al (1996) Muscle differentiation during repair of myocardial necrosis in rats via gene transfer with MyoD. J Clin Invest 98:2209–2217PubMedCrossRefGoogle Scholar
  112. Murry CE, Soonpaa MH, Reinecke H, et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668PubMedCrossRefGoogle Scholar
  113. Neuhaus O, Wiendl H, Kieseier B, et al (2005) Multiple sclerosis: mitoxantrone promotes differential effects on immunocompetent cells in vitro. J Neuroimmunol 168:128–137PubMedCrossRefGoogle Scholar
  114. O’Connor C, Gattis W, Adams KJ, et al (2003) Tezosentan in patients with acute heart failure and acute coronary syndromes: results of the Randomized Intravenous TeZosentan Study (RITZ-4). J Am Coll Cardiol 41:1452–1457PubMedCrossRefGoogle Scholar
  115. Oh H, Bradfute SB, Gallardo TD, et al (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A 100:12313–12318PubMedCrossRefGoogle Scholar
  116. Ohno N, Fedak P, Weisel R, et al (2003) Transplantation of cryopreserved muscle cells in dilated cardiomyopathy: effects on left ventricular geometry and function. J Thorac Cardiovasc Surg 126:1537–1548PubMedCrossRefGoogle Scholar
  117. Orlic D, Kajstura J, Chimenti S, et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705PubMedCrossRefGoogle Scholar
  118. Ott HC, Taylor DA (2006) From cardiac repair to cardiac regeneration—ready to translate? Expert Opin Biol Ther 6:867–878PubMedCrossRefGoogle Scholar
  119. Ott HC, Bonaros N, Marksteiner R, et al (2004) Combined transplantation of skeletal myoblasts and bone marrow stem cells for myocardial repair in rats. Eur J Cardiothorac Surg 25:627–634PubMedCrossRefGoogle Scholar
  120. Ott HC, Kroess R, Bonaros N, et al (2005a) Intramyocardial microdepot injection increases the efficacy of skeletal myoblast transplantation. Eur J Cardiothorac Surg 27:1017–1021PubMedCrossRefGoogle Scholar
  121. Ott HC, Matthiesen T, Brechtken J, et al (2005b) A novel population of adult derived cardiac progenitor cells is capable of functional myocardial repair. Circulation 112:II-332Google Scholar
  122. Ott HC, Brechtken J, Swingen C, et al (2006) Robotic minimally invasive cell transplantation for heart failure. J Thorac Cardiovasc Surg 132:170–173PubMedCrossRefGoogle Scholar
  123. Ott HC, Matthiesen T, Brechtken J, et al (2007) The adult human heart as a source for stem cells: repair strategies with embryonic like progenitor cells. Nat Clin Pract Cardiovasc Med 4suppl 1:S27–S39PubMedCrossRefGoogle Scholar
  124. Pagani FD, DerSimonian H, Zawadzka A, et al (2003) Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. J Am Coll Cardiol 41:879–888PubMedCrossRefGoogle Scholar
  125. Pearson TA, Blair SN, Daniels SR, et al (2002) AHA Guidelines for Primary Prevention of Cardiovascular Disease and Stroke: 2002 Update: consensus panel guide to comprehensive risk reduction for adult patients without coronary or other atherosclerotic vascular diseases. American Heart Association Science Advisory and Coordinating Committee. Circulation 106:388–391PubMedCrossRefGoogle Scholar
  126. Perin EC, Dohmann HF, Borojevic R, et al (2003) Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107:2294–2302PubMedCrossRefGoogle Scholar
  127. Perin EC, Dohmann HF, Borojevic R, et al (2004) Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation 110:II213–218PubMedCrossRefGoogle Scholar
  128. Pickett F (2006) Bisphosphonate-associated osteonecrosis of the jaw: a literature review and clinical practice guidelines. J Dent Hyg 80:10PubMedGoogle Scholar
  129. Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95:9–20PubMedCrossRefGoogle Scholar
  130. Pittenger MF, Mackay AM, Beck SC, et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  131. Raines E, Ferri N (2005) Thematic review series: the immune system and atherogenesis. Cytokines affecting endothelial and smooth muscle cells in vascular disease. J Lipid Res 46:1081–1092PubMedCrossRefGoogle Scholar
  132. Ratajczak M, Reca R, Wysoczynski M, et al (2006) Modulation of the SDF-1-CXCR4 axis by the third complement component (C3)—implications for trafficking of CXCR4+ stem cells. Exp Hematol 34:986–995PubMedCrossRefGoogle Scholar
  133. Rauscher FM, Goldschmidt-Clermont PJ, Davis BH, et al (2003) Aging, progenitor cell exhaustion, and atherosclerosis. Circulation 108:457–463PubMedCrossRefGoogle Scholar
  134. Reffelmann T, Leor J, Muller-Ehmsen J, et al (2003) Cardiomyocyte transplantation into the failing heart-new therapeutic approach for heart failure? Heart Fail Rev 8:201–211PubMedCrossRefGoogle Scholar
  135. Reiffel J (2005) Practical algorithms for pharmacologic management of the post myocardial infarction patient. Clin Cardiol 28:I28–37PubMedCrossRefGoogle Scholar
  136. Reinecke H, MacDonald GH, Hauschka SD, et al (2000) Electromechanical coupling between skeletal and cardiac muscle. Implications for infarct repair. J Cell Biol 149:731–740PubMedCrossRefGoogle Scholar
  137. Reinecke H, Poppa V, Murry CE (2002) Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J Mol Cell Cardiol 34:241–249PubMedCrossRefGoogle Scholar
  138. Saulnier N, Di Campli C, Zocco M, et al (2005) From stem cell to solid organ. Bone marrow, peripheral blood or umbilical cord blood as favorable source? Eur Rev Med Pharmacol Sci 9:315–324PubMedGoogle Scholar
  139. Schachinger V, Assmus B, Britten MB, et al (2004) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol 44:1690–1699PubMedCrossRefGoogle Scholar
  140. Schachinger V, Assmus B, Honold J, et al (2006a) Normalization of coronary blood flow in the infarct-related artery after intracoronary progenitor cell therapy: intracoronary Doppler substudy of the TOPCARE-AMI trial. Clin Res Cardiol 95:13–22PubMedCrossRefGoogle Scholar
  141. Schachinger V, Erbs S, Elsasser A, et al (2006b) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355:1210–1221PubMedCrossRefGoogle Scholar
  142. Schaefer A, Meyer G, Fuchs M, et al (2006) Impact of intracoronary bone marrow cell transfer on diastolic function in patients after acute myocardial infarction: results from the BOOST trial. Eur Heart J 27:929–935PubMedCrossRefGoogle Scholar
  143. Schuster MD, Kocher AA, Seki T, et al (2004) Myocardial neovascularization by bone marrow angioblasts results in cardiomyocyte regeneration. Am J Physiol Heart Circ Physiol 287:H525–532PubMedCrossRefGoogle Scholar
  144. Scorsin M, Hagege AA, Marotte F, et al (1997) Does transplantation of cardiomyocytes improve function of infarcted myocardium? Circulation 96:II-188–193Google Scholar
  145. Scorsin M, Hagege A, Vilquin JT, et al (2000) Comparison of the effects of fetal cardiomyocyte and skeletal myoblast transplantation on postinfarction left ventricular function. J Thorac Cardiovasc Surg 119:1169–1175PubMedCrossRefGoogle Scholar
  146. Shake JG, Gruber PJ, Baumgartner WA, et al (2002) Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg 73:1919–1925; discussion 1926PubMedCrossRefGoogle Scholar
  147. Shintani S, Murohara T, Ikeda H, et al (2001) Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 103:2776–2779PubMedGoogle Scholar
  148. Sidana J, Aronow W, Ravipati G, et al (2005) Prevalence of moderate or severe left ventricular diastolic dysfunction in obese persons with obstructive sleep apnea. Cardiology 104:107–109PubMedCrossRefGoogle Scholar
  149. Silva G, Perin E, Dohmann H, et al (2004) Catheter-based transendocardial delivery of autologous bone-marrow-derived mononuclear cells in patients listed for heart transplantation. Tex Heart Inst J 31:214–219PubMedGoogle Scholar
  150. Siminiak T, Kalawski R, Fiszer D, et al (2004) Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: phase I clinical study with 12 months of follow-up. Am Heart J 148:531–537PubMedCrossRefGoogle Scholar
  151. Siminiak T, Fiszer D, Jerzykowska O, et al (2005) Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment: the POZNAN trial. Eur Heart J 26:1188–1195PubMedCrossRefGoogle Scholar
  152. Skuk D, Goulet M, Roy B, et al (2002) Efficacy of myoblast transplantation in nonhuman primates following simple intramuscular cell injections: toward defining strategies applicable to humans. Exp Neurol 175:112–126PubMedCrossRefGoogle Scholar
  153. Smith R, Barlie L, Cho HC, et al (2005) Unique phenotype of cardiospheres derived from human endomyocardial biopsies. Circulation 112:II-334Google Scholar
  154. Smith SC Jr, Allen J, Blair SN, et al (2006) AHA/ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update: endorsed by the National Heart, Lung, and Blood Institute [erratum appears in Circulation. 2006 Jun 6;113 (22):e847]. Circulation 113:2363–2372PubMedCrossRefGoogle Scholar
  155. Smits PC, van Geuns RJ, Poldermans D, et al (2003) Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J Am Coll Cardiol 42:2063–2069PubMedCrossRefGoogle Scholar
  156. Stamm C, Westphal B, Kleine HD, et al (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361:45–46PubMedCrossRefGoogle Scholar
  157. Stewart C, Newcomb P, Holly J (2004) Multifaceted roles of TNF-alpha in myoblast destruction: a multitude of signal transduction pathways. J Cell Physiol 198:237–247PubMedCrossRefGoogle Scholar
  158. Strauer B, Brehm M, Zeus T, et al (2005) Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. J Am Coll Cardiol 46:1651–1658PubMedCrossRefGoogle Scholar
  159. Strauer BE, Brehm M, Zeus T, et al (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106:1913–1918PubMedCrossRefGoogle Scholar
  160. Suzuki K, Brand NJ, Allen S, et al (2001) Overexpression of connexin 43 in skeletal myoblasts: relevance to cell transplantation to the heart. J Thorac Cardiovasc Surg 122:759–766PubMedCrossRefGoogle Scholar
  161. Takahashi M, Li T, Suzuki R, et al (2006) Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury. Am J Physiol Heart Circ Physiol 291:H886–893PubMedCrossRefGoogle Scholar
  162. Tan P, Xue S, Manunta M, et al (2006) Effect of vectors on human endothelial cell signal transduction: implications for cardiovascular gene therapy. Arterioscler Thromb Vasc Biol 26:462–467PubMedCrossRefGoogle Scholar
  163. Taylor DA, Atkins BZ, Hungspreugs P, et al (1998) Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 4:929–933PubMedCrossRefGoogle Scholar
  164. Thattassery E, Gheorghiade M (2004) Beta blocker therapy after acute myocardial infarction in patients with heart failure and systolic dysfunction. Heart Fail Rev 9:107–113PubMedCrossRefGoogle Scholar
  165. Thom T, Haase N, Rosamond W, et al (2006) Heart disease and stroke statistics—2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 113:e85–e151PubMedCrossRefGoogle Scholar
  166. Thompson RB, Emani SM, Davis BH, et al (2003) Comparison of intracardiac cell transplantation: autologous skeletal myoblasts versus bone marrow cells. Circulation 108[Suppl 1]:II264–II271PubMedGoogle Scholar
  167. Thompson RB, Parsa CJ, van den Bos EJ, et al (2004) Video-assisted thoracoscopic transplantation of myoblasts into the heart. Ann Thorac Surg 78:303–307PubMedCrossRefGoogle Scholar
  168. Toma C, Pittenger MF, Cahill KS, et al (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98PubMedCrossRefGoogle Scholar
  169. Tomita S, Li RK, Weisel RD, et al (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100:II247–256PubMedGoogle Scholar
  170. Torp-Pedersen C, Poole-Wilson PA, Swedberg K, et al (2005) Effects of metoprolol and carvedilol on cause-specific mortality and morbidity in patients with chronic heart failure—COMET. Am Heart J 149:370–376PubMedCrossRefGoogle Scholar
  171. Toth M, Ades P, Tischler M, et al (2006) Immune activation is associated with reduced skeletal muscle mass and physical function in chronic heart failure. Int J Cardiol 109:179–187PubMedCrossRefGoogle Scholar
  172. Tse H, Thambar S, Kwong Y, et al (2006) Safety of catheter-based intramyocardial autologous bone marrow cells implantation for therapeutic angiogenesis. Am J Cardiol 98:60–62PubMedCrossRefGoogle Scholar
  173. Tse HF, Kwong YL, Chan JK, et al (2003) Angiogenesis in ischaemic myocardium by intramy-ocardial autologous bone marrow mononuclear cell implantation. Lancet 361:47–49PubMedCrossRefGoogle Scholar
  174. Udelson J, Patten R, Konstam M (2003) New concepts in post-infarction ventricular remodeling. Rev Cardiovasc Med 4:S3–12PubMedGoogle Scholar
  175. Urbanek K, Torella D, Sheikh F, et al (2005) Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci U S A 102:8692–8697PubMedCrossRefGoogle Scholar
  176. Van Den Bos EJ, Taylor DA (2003) Cardiac transplantation of skeletal myoblasts for heart failure. Minerva Cardioangiol 51:227–243Google Scholar
  177. Vandervelde S, van Luyn M, Tio R, et al (2005) Signaling factors in stem cell-mediated repair of infarcted myocardium. J Mol Cell Cardiol 39:363–376PubMedCrossRefGoogle Scholar
  178. Verfaillie CM, Schwartz R, Reyes M, Jiang Y (2003) Unexpected potential of adult stem cells. Ann N Y Acad Sci 996:231–234PubMedGoogle Scholar
  179. Vulliet PR, Greeley M, Halloran SM, et al (2004) Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet 363:783–784PubMedCrossRefGoogle Scholar
  180. Wakitani S, Saito T, Caplan AI (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18:1417–1426PubMedCrossRefGoogle Scholar
  181. Wang JS, Shum-Tim D, Galipeau J, et al (2000) Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages. J Thorac Cardiovasc Surg 120:999–1005PubMedCrossRefGoogle Scholar
  182. Wang Y, Haider H, Ahmad N, et al (2006) Combining pharmacological mobilization with intramyocardial delivery of bone marrow cells over-expressing VEGF is more effective for cardiac repair. J Mol Cell Cardiol 40:736–745PubMedCrossRefGoogle Scholar
  183. Werner N, Kosiol S, Schiegl T, et al (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353:999–1007PubMedCrossRefGoogle Scholar
  184. Wilke N, Zenovich A, Jerosch-Herold M, et al (2001) Cardiac magnetic resonance imaging for the assessment of myocardial angiogenesis. Curr Interv Cardiol Rep 3:205–212PubMedGoogle Scholar
  185. Wollert KC, Meyer GP, Lotz J, et al (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364:141–148PubMedCrossRefGoogle Scholar
  186. Wyatt SB, Winters KP, Dubbert PM (2006) Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. Am J Med Sci 331:166–174PubMedCrossRefGoogle Scholar
  187. Yan LL, Liu K, Daviglus ML, et al (2006) Education, 15-year risk factor progression, and coronary artery calcium in young adulthood and early middle age: the Coronary Artery Risk Development in Young Adults study. JAMA 295:1793–1800PubMedCrossRefGoogle Scholar
  188. Yancy C, Fonarow G (2004) Quality of care and outcomes in acute decompensated heart failure: the ADHERE Registry. Curr Heart Fail Rep 1:121–128PubMedCrossRefGoogle Scholar
  189. Yang EH, Barsness GW, Gersh BJ, et al (2004) Current and future treatment strategies for refractory angina. Mayo Clin Proc 79:1284–1292PubMedCrossRefGoogle Scholar
  190. Yau T, Kim C, Ng D, et al (2005) Increasing transplanted cell survival with cell-based angiogenic gene therapy. Ann Thorac Surg 80:1779–1786PubMedCrossRefGoogle Scholar
  191. Zen K, Okigaki M, Hosokawa Y, et al (2006) Myocardium-targeted delivery of endothelial progenitor cells by ultrasound-mediated microbubble destruction improves cardiac function via an angiogenic response. J Mol Cell Cardiol 40:799–809PubMedCrossRefGoogle Scholar
  192. Zenovich A, Muehling O, Panse P, et al (2001) Magnetic Resonance first-pass perfusion: overview and perspectives. Rays 26:53–60PubMedGoogle Scholar
  193. Zhai Q, Qiu L, Li Q, et al (2004) Short-term ex vivo expansion sustains the homing-related properties of umbilical cord blood hematopoietic stem and progenitor cells. Haematologica 89:265–273PubMedGoogle Scholar
  194. Zhang M, Methot D, Poppa V, et al (2001) Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol 33:907–921PubMedCrossRefGoogle Scholar
  195. Zhou R, Acton P, Ferrari V (2006) Imaging stem cells implanted in infarcted myocardium. J Am Coll Cardiol 48:2094–2106PubMedCrossRefGoogle Scholar
  196. Zibaitis A, Greentree D, Ma F, et al (1994) Myocardial regeneration with satellite cell implantation. Transplant Proc 26:3294PubMedGoogle Scholar
  197. Zimmet J, Hare JM (2005) Emerging role for bone marrow derived mesenchymal stem cells in myocardial regenerative therapy. Basic Res Cardiol 100:471–481PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • A. G. Zenovich
    • 1
  • B. H. Davis
    • 2
  • D. A. Taylor
    • 1
  1. 1.Center for Cardiovascular RepairMinneapolisUSA
  2. 2.Department of MedicineDuke University Medical CenterDurhamUSA

Personalised recommendations