Bone Marrow-Derived Cells: The Influence of Aging and Cellular Senescence

  • C. Beauséjour
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 180)


During the course of an entire lifespan, tissue repair and regeneration is made possible by the presence of adult stem cells. Stem cell expansion, maintenance, and differentiation must be tightly controlled to assure longevity. Hematopoietic stem cells (HSC) are greatly solicited given the daily high blood cell turnover. Moreover, several bone marrow-derived cells including HSC, mesenchymal stromal cells (MSC), and endothelial progenitor cells (EPC) also significantly contribute to peripheral tissue repair and regeneration, including tumor formation. Therefore, factors influencing bone marrow-derived cell proliferation and functions are likely to have a broad impact. Aging has been identified as one of these factors. One hypothesis is that aging directly affects stem cells as a consequence of exhaustive proliferation. Alternatively, it is also possible that aging indirectly affects stem cells by acting on their microenvironment. Cellular senescence is believed to have evolved as a tumor suppressor mechanism capable of arresting growth to reduce risk of malignancy. In opposition to apoptosis, senescent cells accumulate in tissues. Recent evidence suggests their accumulation contributes to the phenotype of aging. Senescence can be activated by both telomere-dependent and telomere-independent pathways. Genetic alteration, genome-wide DNA damage, and oxidative stress are inducers of senescence and have recently been identified as occurring in bone marrow-derived cells. Below is a review of the link between cellular senescence, aging, and bone marrow-derived cells, and the possible consequences aging may have on bone marrow trans plantation procedures and emerging marrow-derived cell-based therapies.


Senescence Aging Bone marrow-derived cells Oxidative stress Cyclin-dependent kinase inhibitor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghi M, Chiocca EA (2005) Contribution of bone marrow-derived cells to blood vessels in ischemic tissues and tumors. Mol Ther 12:994–1005PubMedCrossRefGoogle Scholar
  2. Allsopp RC, Cheshier S, Weissman IL (2001) Telomere shortening accompanies increased cell cycle activity during serial transplantation of hematopoietic stem cells. J Exp Med 193:917–924PubMedCrossRefGoogle Scholar
  3. Allsopp RC, Morin GB, DePinho R, Harley CB, Weissman IL (2003a) Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood 102:517–520PubMedCrossRefGoogle Scholar
  4. Allsopp RC, Morin GB, Horner JW, DePinho R, Harley CB, Weissman IL (2003b) Effect of TERT over-expression on the long-term transplantation capacity of hematopoietic stem cells. Nat Med 9:369–371PubMedCrossRefGoogle Scholar
  5. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967PubMedCrossRefGoogle Scholar
  6. Atkuri KR, Herzenberg LA, Herzenberg LA (2005) Culturing at atmospheric oxygen levels impacts lymphocyte function. Proc Natl Acad Sci U S A 102:3756–3759PubMedCrossRefGoogle Scholar
  7. Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I (2004) Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22:675–682PubMedCrossRefGoogle Scholar
  8. Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, Campisi J (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22:4212–4222PubMedCrossRefGoogle Scholar
  9. Bieback K, Kern S, Kluter H, Eichler H (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22:625–634PubMedCrossRefGoogle Scholar
  10. Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25–34PubMedCrossRefGoogle Scholar
  11. Bordone L, Guarente L (2005) Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 6:298–305PubMedCrossRefGoogle Scholar
  12. Broccoli D, Young JW, de Lange T (1995) Telomerase activity in normal and malignant hematopoietic cells. Proc Natl Acad Sci U S A 92:9082–9086PubMedCrossRefGoogle Scholar
  13. Bulavin DV, Phillips C, Nannenga B, Timofeev O, Donehower LA, Anderson CW, Appella E, Fornace AJ Jr (2004) Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway. Nat Genet 36:343–350PubMedCrossRefGoogle Scholar
  14. Campisi J (1997) The biology of replicative senescence. Eur J Cancer 33:703–709PubMedCrossRefGoogle Scholar
  15. Campisi J (2003) Cancer and ageing: rival demons? Nat Rev Cancer 3:339–349PubMedCrossRefGoogle Scholar
  16. Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–522PubMedCrossRefGoogle Scholar
  17. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864PubMedCrossRefGoogle Scholar
  18. Chen J, Astle CM, Harrison DE (2000) Genetic regulation of primitive hematopoietic stem cell senescence. Exp Hematol 28:442–450PubMedCrossRefGoogle Scholar
  19. Chen J, Astle CM, Harrison DE (2003) Hematopoietic senescence is postponed and hematopoietic stem cell function is enhanced by dietary restriction. Exp Hematol 31:1097–1103PubMedCrossRefGoogle Scholar
  20. Chen Q, Fischer A, Reagan JD, Yan LJ, Ames BN (1995) Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci U S A 92:4337–4341PubMedCrossRefGoogle Scholar
  21. Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M, Scadden DT (2000) Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287:1804–1808PubMedCrossRefGoogle Scholar
  22. Cipolleschi MG, Dello Sbarba P, Olivotto M (1993) The role of hypoxia in the maintenance of hematopoietic stem cells. Blood 82:2031–2037PubMedGoogle Scholar
  23. Cipolleschi MG, D’Ippolito G, Bernabei PA, Caporale R, Nannini R, Mariani M, Fabbiani M, Rossi-Ferrini P, Olivotto M, Dello Sbarba P (1997) Severe hypoxia enhances the formation of erythroid bursts from human cord blood cells and the maintenance of BFU-E in vitro. Exp Hematol 25:1187–1194PubMedGoogle Scholar
  24. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433:760–764PubMedCrossRefGoogle Scholar
  25. Danet GH, Pan Y, Luongo JL, Bonnet DA, Simon MC (2003) Expansion of human SCID-repopulating cells under hypoxic conditions. J Clin Invest 112:126–135PubMedCrossRefGoogle Scholar
  26. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith OM, Peacocke M, Campisi J (1995) A novel biomarker identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367PubMedCrossRefGoogle Scholar
  27. Ebert R, Ulmer M, Zeck S, Meissner-Weigl J, Schneider D, Stopper H, Schupp N, Kassem M, Jakob F (2006) Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro. Stem Cells 24:1226–1235PubMedCrossRefGoogle Scholar
  28. Edelberg JM, Lee SH, Kaur M, Tang L, Feirt NM, McCabe S, Bramwell O, Wong SC, Hong MK (2002) Platelet-derived growth factor-AB limits the extent of myocardial infarction in a rat model: feasibility of restoring impaired angiogenic capacity in the aging heart. Circulation 105:608–613PubMedCrossRefGoogle Scholar
  29. Engelhardt M, Kumar R, Albanell J, Pettengell R, Han W, Moore MA (1997) Telomerase regulation, cell cycle, and telomere stability in primitive hematopoietic cells. Blood 90:182–193PubMedGoogle Scholar
  30. Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–242PubMedCrossRefGoogle Scholar
  31. Gardner RV, Lerner C, Astle CM, Harrison DE (1993) Assessing permanent damage to primitive hematopoietic stem cells after chemotherapy using the competitive repopulation assay. Cancer Chemother Pharmacol 32:450–454PubMedCrossRefGoogle Scholar
  32. Geiger H, True JM, de Haan G, Van Zant G (2001) Age-and stage-specific regulation patterns in the hematopoietic stem cell hierarchy. Blood 98:2966–2972PubMedCrossRefGoogle Scholar
  33. Geiger H, Rennebeck G, Van Zant G (2005) Regulation of hematopoietic stem cell aging in vivo by a distinct genetic element. Proc Natl Acad Sci U S A 102:5102–5107PubMedCrossRefGoogle Scholar
  34. Gennaro G, Menard C, Michaud SE, Rivard A (2003) Age-dependent impairment of reendothelialization after arterial injury: role of vascular endothelial growth factor. Circulation 107:230–233PubMedCrossRefGoogle Scholar
  35. Gupta R, Karpatkin S, Basch RS (2006) Hematopoiesis and stem cell renewal in long-term bone marrow cultures containing catalase. Blood 107:1837–1846PubMedCrossRefGoogle Scholar
  36. Harrison DE (1983) Long-term erythropoietic repopulating ability of old, young, and fetal stem cells. J Exp Med 157:1496–1504PubMedCrossRefGoogle Scholar
  37. Harrison DE, Astle CM (1982) Loss of stem cell repopulating ability upon transplantation. Effects of donor age, cell number, and transplantation procedure. J Exp Med 156:1767–1779PubMedCrossRefGoogle Scholar
  38. Harrison DE, Astle CM, Delaittre JA (1978) Loss of proliferative capacity in immunohemopoietic stem cells caused by serial transplantation rather than aging. J Exp Med 147:1526–1531PubMedCrossRefGoogle Scholar
  39. Harrison DE, Astle CM, Stone M (1989) Numbers and functions of transplantable primitive immunohematopoietic stem cells. Effects of age. J Immunol 142:3833–3840PubMedGoogle Scholar
  40. Harrison DE, Stone M, Astle CM (1990) Effects of transplantation on the primitive immunohematopoietic stem cell. J Exp Med 172:431–437PubMedCrossRefGoogle Scholar
  41. Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636PubMedCrossRefGoogle Scholar
  42. Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM (2006) Cellular senescence in aging primates. Science 311:1257PubMedCrossRefGoogle Scholar
  43. Hoffmann J, Haendeler J, Aicher A, Rossig L, Vasa M, Zeiher AM, Dimmeler S (2001) Aging enhances the sensitivity of endothelial cells toward apoptotic stimuli: important role of nitric oxide. Circ Res 89:709–715PubMedGoogle Scholar
  44. Ito K, Hirao A, Arai F, Matsuoka S, Takubo K, Hamaguchi I, Nomiyama K, Hosokawa K, Sakurada K, Nakagata N, Ikeda Y, Mak TW, Suda T (2004) Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431:997–1002PubMedCrossRefGoogle Scholar
  45. Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K, Ohmura M, Naka K, Hosokawa K, Ikeda Y, Suda T (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12:446–451PubMedCrossRefGoogle Scholar
  46. Ivanovic Z, Dello Sbarba P, Trimoreau F, Faucher JL, Praloran V (2000) Primitive human HPCs are better maintained and expanded in vitro at 1 percent oxygen than at 20 percent. Transfusion 40:1482–1488PubMedCrossRefGoogle Scholar
  47. Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M (1999) The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397:164–168PubMedCrossRefGoogle Scholar
  48. Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, Dombkowski DM, Cheng T, De-Pinho RA, Sharpless NE, Scadden DT (2006) Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443:404–405CrossRefGoogle Scholar
  49. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A 97:3422–3427PubMedCrossRefGoogle Scholar
  50. Karlseder J, Smogorzewska A, de Lange T (2002) Senescence induced by altered telomere state, not telomere loss. Science 295:2446–2449PubMedCrossRefGoogle Scholar
  51. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121PubMedCrossRefGoogle Scholar
  52. Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L, Sharpless NE (2004) Ink4a/Arf expression is a biomarker of aging. J Clin Invest 114:1299–1307PubMedCrossRefGoogle Scholar
  53. Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A 98:12072–12077PubMedCrossRefGoogle Scholar
  54. Lansdorp PM, Dragowska W, Mayani H (1993) Ontogeny-related changes in proliferative potential of human hematopoietic cells. J Exp Med 178:787–791PubMedCrossRefGoogle Scholar
  55. Liang Y, Van Zant G, Szilvassy SJ (2005) Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood 106:1479–1487PubMedCrossRefGoogle Scholar
  56. Martens UM, Chavez EA, Poon SS, Schmoor C, Lansdorp PM (2000) Accumulation of short telomeres in human fibroblasts prior to replicative senescence. Exp Cell Res 256:291–299PubMedCrossRefGoogle Scholar
  57. Meirelles Lda S, Nardi NB (2003) Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. Br J Haematol 123:702–711PubMedCrossRefGoogle Scholar
  58. Meng A, Wang Y, Van Zant G, Zhou D (2003) Ionizing radiation and busulfan induce premature senescence in murine bone marrow hematopoietic cells. Cancer Res 63:5414–5419PubMedGoogle Scholar
  59. Morrison SJ, Prowse KR, Ho P, Weissman IL (1996) Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity 5:207–216PubMedCrossRefGoogle Scholar
  60. Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716PubMedCrossRefGoogle Scholar
  61. Notaro R, Cimmino A, Tabarini D, Rotoli B, Luzzatto L (1997) In vivo telomere dynamics of human hematopoietic stem cells. Proc Natl Acad Sci U S A 94:13782–13785PubMedCrossRefGoogle Scholar
  62. Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J (2003) Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 5:741–747PubMedCrossRefGoogle Scholar
  63. Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito S, Higashimoto Y, Appella E, Minucci S, Pandolfi PP, Pelicci PG (2000) PML regulates p53 acetylation and premature senescence induced by oncogenic RAS. Nature 406:207–210PubMedCrossRefGoogle Scholar
  64. Peters BA, Diaz LA, Polyak K, Meszler L, Romans K, Guinan EC, Antin JH, Myerson D, Hamilton SR, Vogelstein B, Kinzler KW, Lengauer C (2005) Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nat Med 11:261–262PubMedCrossRefGoogle Scholar
  65. Peterson CL, Cote J (2004) Cellular machineries for chromosomal DNA repair. Genes Dev 18:602–616PubMedCrossRefGoogle Scholar
  66. Piacibello W, Bruno S, Sanavio F, Droetto S, Gunetti M, Ailles L, Santoni de Sio F, Viale A, Gammaitoni L, Lombardo A, Naldini L, Aglietta M (2002) Lentiviral gene transfer and ex vivo expansion of human primitive stem cells capable of primary, secondary, and tertiary multilineage repopulation in NOD/SCID mice. Nonobese diabetic/severe combined immunodeficient. Blood 100:4391–4400PubMedCrossRefGoogle Scholar
  67. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  68. Prowse KR, Greider CW (1995) Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc Natl Acad Sci USA 92:4818–4822PubMedCrossRefGoogle Scholar
  69. Rauscher FM, Goldschmidt-Clermont PJ, Davis BH, Wang T, Gregg D, Ramaswami P, Pippen AM, Annex BH, Dong C, Taylor DA (2003) Aging, progenitor cell exhaustion, and atherosclerosis. Circulation 108:457–463PubMedCrossRefGoogle Scholar
  70. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98:2615–2625PubMedCrossRefGoogle Scholar
  71. Rivard A, Fabre JE, Silver M, Chen D, Murohara T, Kearney M, Magner M, Asahara T, Isner JM (1999) Age-dependent impairment of angiogenesis. Circulation 99:111–120PubMedGoogle Scholar
  72. Rochefort GY, Delorme B, Lopez A, Herault O, Bonnet P, Charbord P, Eder V, Domenech J (2006) Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia. Stem Cells 24:2202–2208PubMedCrossRefGoogle Scholar
  73. Ross EA, Anderson N, Micklem HS (1982) Serial depletion and regeneration of the murine hematopoietic system. Implications for hematopoietic organization and the study of cellular aging. J Exp Med 155:432–444PubMedCrossRefGoogle Scholar
  74. Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ, Weissman IL (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A 102:9194–9199PubMedCrossRefGoogle Scholar
  75. Samper E, Fernandez P, Eguia R, Martin-Rivera L, Bernad A, Blasco MA, Aracil M (2002) Long-term repopulating ability of telomerase-deficient murine hematopoietic stem cells. Blood 99:2767–2775PubMedCrossRefGoogle Scholar
  76. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602PubMedCrossRefGoogle Scholar
  77. Sharpless NE, DePinho RA (2004) Telomeres, stem cells, senescence, and cancer. J Clin Invest 113:160–168PubMedCrossRefGoogle Scholar
  78. Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3:155–168PubMedCrossRefGoogle Scholar
  79. Shimada T, Takeshita Y, Murohara T, Sasaki K, Egami K, Shintani S, Katsuda Y, Ikeda H, Nabeshima Y, Imaizumi T (2004) Angiogenesis and vasculogenesis are impaired in the precocious-aging klotho mouse. Circulation 110:1148–1155PubMedCrossRefGoogle Scholar
  80. Siminovitch L, Till JE, McCulloch EA (1964) Decline in colony-forming ability of marrow cells subjected to serial transplantation into irradiated mice. J Cell Physiol 64:23–31PubMedCrossRefGoogle Scholar
  81. Smith JR, Pereira-Smith OM (1996) Replicative senescence: implications for in vivo aging and tumor suppression. Science 273:63–67PubMedCrossRefGoogle Scholar
  82. Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W (2003) Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 425:307–311PubMedCrossRefGoogle Scholar
  83. Stanulis-Praeger B (1987) Cellular senescence revisited: a review. Mech Ageing Dev 38:1–48PubMedCrossRefGoogle Scholar
  84. Stein GH, Drullinger LF, Soulard A, Dulic V (1999) Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol Cell Biol 19:2109–2117PubMedGoogle Scholar
  85. Stenderup K, Justesen J, Clausen C, Kassem M (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33:919–926PubMedCrossRefGoogle Scholar
  86. Stepanova L, Sorrentino BP (2005) A limited role for p16Ink4a and p19Arf in the loss of hematopoietic stem cells during proliferative stress. Blood 106:827–832PubMedCrossRefGoogle Scholar
  87. Sudo K, Ema H, Morita Y, Nakauchi H (2000) Age-associated characteristics of murine hematopoietic stem cells. J Exp Med 192:1273–1280PubMedCrossRefGoogle Scholar
  88. Testa NG, Hendry JH, Molineux G (1985) Long-term bone marrow damage in experimental systems and in patients after radiation or chemotherapy. Anticancer Res 5:101–110PubMedGoogle Scholar
  89. Van Zant G, Holland BP, Eldridge PW, Chen JJ (1990) Genotype-restricted growth and aging patterns in hematopoietic stem cell populations of allophenic mice. J Exp Med 171:1547–1565PubMedCrossRefGoogle Scholar
  90. Van Zant G, Scott-Micus K, Thompson BP, Fleischman RA, Perkins S (1992) Stem cell quiescence/activation is reversible by serial transplantation and is independent of stromal cell genotype in mouse aggregation chimeras. Exp Hematol 20:470–475PubMedGoogle Scholar
  91. Wang Y, Schulte BA, LaRue AC, Ogawa M, Zhou D (2006) Total body irradiation selectively induces murine hematopoietic stem cell senescence. Blood 107:358–366PubMedCrossRefGoogle Scholar
  92. Wei W, Sedivy JM (1999) Differentiation between senescence (M1) and crisis (M2) in human fibroblast cultures. Exp Cell Res 253:519–522PubMedCrossRefGoogle Scholar
  93. Weng NP, Hodes RJ (2000) The role of telomerase expression and telomere length maintenance in human and mouse. J Clin Immunol 20:257–267PubMedCrossRefGoogle Scholar
  94. Wright WE, Shay JW (2001) Cellular senescence as a tumor-protection mechanism: the essential role of counting. Curr Opin Genet Dev 11:98–103PubMedCrossRefGoogle Scholar
  95. Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW (1996) Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 18:173–179PubMedCrossRefGoogle Scholar
  96. Xing Z, Ryan MA, Daria D, Nattamai KJ, Van Zant G, Wang L, Zheng Y, Geiger H (2006) Increased hematopoietic stem cell mobilization in aged mice. Blood 108:2190–2197PubMedCrossRefGoogle Scholar
  97. Yilmaz OH, Kiel MJ, Morrison SJ (2006) SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity. Blood 107:924–930PubMedCrossRefGoogle Scholar
  98. Yuan R, Astle CM, Chen J, Harrison DE (2005) Genetic regulation of hematopoietic stem cell exhaustion during development and growth. Exp Hematol 33:243–250PubMedCrossRefGoogle Scholar
  99. Zhang X, Li J, Sejas DP, Pang Q (2005a) The ATM/p53/p21 pathway influences cell fate decision between apoptosis and senescence in reoxygenated hematopoietic progenitor cells. J Biol Chem 280:19635–19640PubMedCrossRefGoogle Scholar
  100. Zhang X, Li J, Sejas DP, Pang Q (2005b) Hypoxia-reoxygenation induces premature senescence in FA bone marrow hematopoietic cells. Blood 106:75–85PubMedCrossRefGoogle Scholar
  101. Zimmermann S, Voss M, Kaiser S, Kapp U, Waller CF, Martens UM (2003) Lack of telomerase activity in human mesenchymal stem cells. Leukemia 17:1146–1149PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • C. Beauséjour
    • 1
  1. 1.Department of PharmacologyUniversité de Montréal & Centre Hospitalier Universitaire Sainte-JustineMontrealCanada

Personalised recommendations