Advertisement

Role of Endothelial Nitric Oxide in Bone Marrow-Derived Progenitor Cell Mobilization

  • M. Monterio de Resende
  • L. -Y. Huw
  • H. -S. Qian
  • K. KauserEmail author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 180)

Abstract

Mobilization and recruitment of bone marrow-derived progenitor cells (BMDPCs) play an important role in postischemic tissue repair. Patients with coronary artery disease (CAD) or peripheral vascular disease (PVD) exhibit endothelial dysfunction, and as a result are likely to have a reduced number of progenitor cells mobilized in their peripheral circulation following ischemic injury. Identification of eNOS independent pathways for BMDPC mobilization may have important therapeutic value in this patient population. To identify such mechanisms we investigated the effect of granulocyte-colony stimulating factor (GCSF) and stem cell factor (SCF) in eNOS-KO mice with and without surgical hind-limb ischemia. Our results suggest that BMDPC mobilization can be achieved via activation of NO-independent pathways.

Keywords

Bone marrow-derived progenitor cells VEGF G-CSF eNOS CLI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, Technau-Ihling K, Zeiher AM, Dimmeler S (2003) Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 9:1370–1376PubMedCrossRefGoogle Scholar
  2. Aicher A, Heeschen C, Dimmeler S (2004) The role of NOS3 in stem cell mobilization. Trends Mol Med 10:421–425PubMedCrossRefGoogle Scholar
  3. Al-Khaldi A, Al-Sabti H, Galipeau J, Lachapelle K (2003) Therapeutic angiogenesis using autologous bone marrow stromal cells: improved blood flow in a chronic limb ischemia model. Ann Thorac Surg 75:204–209PubMedCrossRefGoogle Scholar
  4. Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzion S, Tessone A, Miller L, Guetta E, Zipori D, Kedes LH, et al (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infracted myocardium: feasibility, cell migration, and body distribution. Circulation 108:863–868PubMedCrossRefGoogle Scholar
  5. Boger RH, Bode-Boger SM, Thiele W, Junker W, Alexander K, Frolich JC (1997) Biochemical evidence for impaired nitric oxide synthesis in patients with peripheral arterial occlusive disease. Circulation 95:2068–2074PubMedGoogle Scholar
  6. Dimmeler S, Hermann C, Galle J, Zeiher AM (1999) Upregulation of superoxide dismutase and nitric oxide synthase mediates the apoptosis-suppressive effects of shear stress on endothelial cells. Arterioscler Thromb Vasc Biol 19:656–664PubMedGoogle Scholar
  7. Dimmeler S, Aicher A, Vasa M, Mildner-Rihm C, Adler K, Tiemann M, Rutten H, Fichtlscherer S, Martin H, Zeiher AM (2001) HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 108:391–397PubMedCrossRefGoogle Scholar
  8. Gonzalez-Fernandez F, Jimenez A, Lopez-Blaya A, Velasco S, Arriero MM, Celdran A, Rico L, Farre J, Casado S, Lopez-Farre A (2001) Cerivastatin prevents tumor necrosis factoralpha-induced downregulation of endothelial nitric oxide synthase: role of endothelial cytosolic proteins. Atherosclerosis 155:61–70PubMedCrossRefGoogle Scholar
  9. Gregg AR, Schauer A, Shi O, Liu Z, Lee CG, O’Brien WE (1998) Limb reduction defects in endothelial nitric oxide synthase-deficient mice. Am J Physiol 275:H2319–H2324PubMedGoogle Scholar
  10. Heeschen C, Lehmann R, Honold J, Assmus B, Aicher A, Walter DH, Martin H, Zeiher AM, Dimmeler S (2004) Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 109:1615–1622PubMedCrossRefGoogle Scholar
  11. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, et al (2002) Recruitment of stem and progenitor cells fromthe bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109:625–637PubMedCrossRefGoogle Scholar
  12. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600PubMedCrossRefGoogle Scholar
  13. Jo DY, Hwang JH, Kim JM, Yun HJ, Kim S (2003) Human bone marrow endothelial cells elaborate non-stromal-cell-derived factor-1 (SDF-1)-dependent chemoattraction and SDF-1-dependent transmigration of haematopoietic progenitors. Br J Haematol 121:649–652PubMedCrossRefGoogle Scholar
  14. Kauser K, Rubanyi GM (2002) “Nitric oxide deficiency” in cardiovascular diseases. Cardiovascular protection by restoration of endothelial nitric oxide production. In: Rubanyi GM (ed) Mechanisms of vasculoprotection. Springer-Verlag, Berlin Heidelberg New York, pp 1–31Google Scholar
  15. Kawamoto A, Tkebuchava T, Yamaguchi J, Nishimura H, Yoon YS, Milliken C, Uchida S, Masuo O, Iwaguro H, Ma H, et al (2003) Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 107:461–468PubMedCrossRefGoogle Scholar
  16. Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, Fuchs S, Epstein SE (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109:1543–1549PubMedCrossRefGoogle Scholar
  17. Landmesser U, Engberding N, Bahlmann FH, Schaefer A, Wiencke A, Heineke A, Spiekermann S, Hilfiker-Kleiner D, Templin C, Kotlarz D, Mueller M, Fuchs M, Hornig B, Haller H, Drexler H (2004) Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation 110:1933–1939PubMedCrossRefGoogle Scholar
  18. Laufs U, Werner N, Link A, Endres M, Wassmann S, Jurgens K, Miche E, Bohm M, Nickenig G (2004) Physical training increases endothelial progenitor cells, inhibits neointimal formation, and enhances angiogenesis. Circulation 109:220–226PubMedCrossRefGoogle Scholar
  19. Lenk K, Adams V, Lurz P, Erbs S, Linke A, Gielen S, Schmidt A, Scheinert D, Biamino G, Emmrich F, et al (2005) Therapeutical potential of blood-derived progenitor cells in patients with peripheral arterial occlusive disease and critical limb ischaemia. Eur Heart J 26:1903–1909PubMedCrossRefGoogle Scholar
  20. Lévesque JP, Liu F, Simmons PJ, Betsuyaku T, Senior RM, Pham C, Link DC (2004) Characterization of hematopoietic progenitor mobilization in protease-deficientmice. Blood 104:65–72PubMedCrossRefGoogle Scholar
  21. Llevadot J, Murasawa S, Kureishi Y, Uchida S, Masuda H, Kawamoto A, Walsh K, Isner JM, Asahara T (2001) HMG-CoA reductase inhibitor mobilizes bone marrow-derived endothelial progenitor cells. J Clin Invest 108:399–405PubMedCrossRefGoogle Scholar
  22. Losordo DW, Dimmeler S (2004) Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part II: cell-based therapies. Circulation 109:2692–2697PubMedCrossRefGoogle Scholar
  23. Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C, Kearney M, Chen D, Symes JF, Fishman MC, et al (1998) Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 101:2567–2578PubMedGoogle Scholar
  24. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A 98:10344–10349PubMedCrossRefGoogle Scholar
  25. Ozuyaman B, Ebner P, Niesler U, Ziemann J, Kleinbongard P, Jax T, Godecke A, Kelm M, Kalka C (2005) Nitric oxide differentially regulates proliferation and mobilization of endothelial progenitor cells but not of hematopoietic stem cells. Thromb Haemost 94:770–772PubMedGoogle Scholar
  26. Qian HS, Liu P, Kauser K, et al (2001) Nitric oxide deficiency leads to impaired angiogenesis and severe dysfunction of microcirculation in a mouse hind limb ischemia model. Proceedings of the 7th World Congress of Microcirculation Sydney, Australia. Monduzzi Editore, Sydney, pp 525–529Google Scholar
  27. Qian HS, Liu P, Huw LY, Orme A, Halks-Miller M, Hill SM, Jin F, Kretschmer P, Blasko E, Cashion L, Szymanski P, Vergona R, Harkins R, Yu J, Sessa WC, Dole WP, Rubanyi GM, Kauser K (2006) Effective treatment of vascular endothelial growth factor refractory hindlimb ischemia by a mutant endothelial nitric oxide synthase gene. Gene Ther 13:1342–1350PubMedCrossRefGoogle Scholar
  28. Rabbany SY, Heissig B, Hattori K, Rafii S (2003) Molecular pathways regulating mobilization of marrow-derived stem cells for tissue revascularization. Trends Mol Med 9:109–117PubMedCrossRefGoogle Scholar
  29. Schachinger V, Britten MB, Zeiher AM (2000) Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 101:1899–1906PubMedGoogle Scholar
  30. Semerad CL, Christopher MJ, Liu F, Short B, Simmons PJ, Winkler I, Lévesque JP, Chappel J, Ross FP, Link DC (2005) G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 106:3020–3027PubMedCrossRefGoogle Scholar
  31. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia-and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438PubMedCrossRefGoogle Scholar
  32. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, et al (2002) Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 360:427–435PubMedCrossRefGoogle Scholar
  33. Urbich C, Dimmeler S (2005) Risk factors for coronary artery disease, circulating endothelial progenitor cells, and the role of HMG-Co Areductase inhibitors. Kidney Int 67:1672–1676PubMedCrossRefGoogle Scholar
  34. Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89:E1–7PubMedGoogle Scholar
  35. Vita JA, Treasure CB, Nabel EG, McLenachan JM, Fish RD, Yeung AC, Vekshtein VI, Selwyn AP, Ganz P (1990) Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation 81:491–497PubMedGoogle Scholar
  36. Werner N, Nickenig G (2006) Influence of cardiovascular risk factors on endothelial progenitor cells: limitations for therapy? Arterioscler Thromb Vasc Biol 26:257–266PubMedCrossRefGoogle Scholar
  37. Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Bohm M, Nickenig G (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353:999–1007PubMedCrossRefGoogle Scholar
  38. Yu J, deMuinck ED, Zhuang Z, Drinane M, Kauser K, Rubanyi GM, Qian HS, Murata T, Escalante B, Sessa WC (2005) Endothelial nitric oxide synthase is critical for ischemic remodeling, mural cell recruitment, and blood flow reserve. Proc Natl Acad Sci U S A 102:10999–11004PubMedCrossRefGoogle Scholar
  39. Zeiher AM, Drexler H, Saurbier B, Just H (1993) Endothelium-mediated coronary blood flow modulation in humans. Effects of age, atherosclerosis, hypercholesterolemia, and hypertension. J Clin Invest 92:652–662PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • M. Monterio de Resende
    • 1
  • L. -Y. Huw
    • 2
  • H. -S. Qian
    • 3
  • K. Kauser
    • 4
    Email author
  1. 1.Medical College of WisconsinUSA
  2. 2.GenentechSouth San FranciscoUSA
  3. 3.Berlex BisosciencesRichmondUSA
  4. 4.Boehringer Ingelheim Pharmaceuticals, Inc.RidgefieldUSA

Personalised recommendations