Advertisement

Stem Cells as a Treatment for Chronic Liver Disease and Diabetes

  • N. LevičarEmail author
  • I. Dimarakis
  • C. Flores
  • J. Tracey
  • M. Y. Gordon
  • N. A. Habib
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 180)

Abstract

Advances in stem cell biology and the discovery of pluripotent stem cells have made the prospect of cell therapy and tissue regeneration a clinical reality. Cell therapies hold great promise to repair, restore, replace or regenerate affected organs and may perform better than any pharmacological or mechanical device. There is an accumulating body of evidence supporting the contribution of adult stem cells, in particular those of bone marrow origin, to liver and pancreatic islet cell regeneration. In this review, we will focus on the cell therapy for the diseased liver and pancreas by adult haematopoietic stem cells, as well as their possible contribution and application to tissue regeneration. Furthermore, recent progress in the generation, culture and targeted differentiation of human haematopoietic stem cells to hepatic and pancreatic lineages will be discussed. We will also explore the possibility that stem cell technology may lead to the development of clinical modalities for human liver disease and diabetes.

Keywords

Stem cell therapy Haematopoietic stem cells Liver disease Diabetes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alison MR, Poulsom R, Jeffery R, Dhillon AP, Quaglia A, Jacob J, Novelli M, Prentice G, Williamson J, Wright NA (2000) Hepatocytes from non-hepatic adult stem cells. Nature 406:257PubMedCrossRefGoogle Scholar
  2. am Esch JS 2nd, Knoefel WT, Klein M, Ghodsizad A, Fuerst G, Poll LW, Piechaczek C, Burchardt ER, Feifel N, Stoldt V, Stockschlader M, Stoecklein N, Tustas RY, Eisenberger CF, Peiper M, Haussinger D, Hosch SB (2005) Portal application of autologous CD133+ bone marrow cells to the liver: a novel concept to support hepatic regeneration. Stem Cells 23:463–470CrossRefGoogle Scholar
  3. Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Dobert N, Grunwald F, Aicher A, Urbich C, Martin H, Hoelzer D, Dimmeler S, Zeiher AM (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCAREAMI). Circulation 106:3009–3017PubMedCrossRefGoogle Scholar
  4. Banerjee M, Kumar A, Bhonde RR (2005) Reversal of experimental diabetes by multiple bone marrow transplantation. Biochem Biophys Res Commun 328:318–325PubMedCrossRefGoogle Scholar
  5. Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192PubMedCrossRefGoogle Scholar
  6. Block GD, Locker J, Bowen WC, Petersen BE, Katyal S, Strom SC, Riley T, Howard TA, Michalopoulos GK (1996) Population expansion, clonal growth, and specific differentiation patterns in primary cultures of hepatocytes induced by HGF/SF, EGF and TGF alpha in a chemically defined (HGM) medium. J Cell Biol 132:1133–1149PubMedCrossRefGoogle Scholar
  7. Bonner-Weir S, Weir GC (2005) New sources of pancreatic beta-cells.Nat Biotechnol 23:857–861CrossRefGoogle Scholar
  8. Burns CJ, Persaud SJ, Jones PM (2004) Stem cell therapy for diabetes: do we need to make beta cells? J Endocrinol 183:437–443PubMedCrossRefGoogle Scholar
  9. Choi JB, Uchino H, Azuma K, Iwashita N, Tanaka Y, Mochizuki H, Migita M, Shimada T, Kawamori R, Watada H (2003) Little evidence of transdifferentiation of bone marrow-derived cells into pancreatic beta cells. Diabetologia 46:1366–1374PubMedCrossRefGoogle Scholar
  10. D’Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC (2004)Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117:2971–2981PubMedCrossRefGoogle Scholar
  11. Dahlke MH, Popp FC, Bahlmann FH, Aselmann H, Jager MD, Neipp M, Piso P, Klempnauer J, Schlitt HJ (2003) Liver regeneration in a retrorsine/CCl4-induced acute liver failure model: do bone marrow-derived cells contribute? J Hepatol 39:365–373PubMedCrossRefGoogle Scholar
  12. Daneman D (2006) Type 1 diabetes. Lancet 367:847–858PubMedCrossRefGoogle Scholar
  13. Devendra D, Liu E, Eisenbarth GS (2004) Type 1 diabetes: recent developments. BMJ 328:750–754PubMedCrossRefGoogle Scholar
  14. Dor Y, Brown J, Martinez OI, Melton DA (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429:41–46PubMedCrossRefGoogle Scholar
  15. Ende N, Chen R, Reddi AS (2004) Effect of human umbilical cord blood cells on glycemia and insulitis in type 1 diabetic mice. Biochem Biophys Res Commun 325:665–669PubMedCrossRefGoogle Scholar
  16. Fallowfield JA, Iredale JP (2004) Targeted treatments for cirrhosis. Expert Opin Ther Targets 8:423–435PubMedCrossRefGoogle Scholar
  17. Fang TC, Alison MR, Wright NA, Poulsom R (2004) Adult stem cell plasticity:will engineered tissues be rejected? Int J Exp Pathol 85:115–124PubMedCrossRefGoogle Scholar
  18. Fernandez Vina R, Andrin O, Saslavsky J, Ferreyra de Silva J, Vrsalovick F, Camozzi L, Ferreyra O, D Adamo C, Foressi F, Fernandez Vina R, Clasen A (2006a) Increase of ‘c’ peptide level in type 1 diabetics patients after direct pancreas implant by endovascular way of autologous adult mononuclear CD34+CD38(−) cells (Teceldiab 2 study). In: 4th International Society for Stem Cell Research Annual Meeting, TorontoGoogle Scholar
  19. Fernandez Vina R, Saslavsky J, Andrin O, Vrsalovick F, Ferreyra de Silva J, Ferreyra O, Camozzi L, Foressi F, D Adamo C, Fernandez Vina R (2006b) First word reported data from Argentina of implant and cellular therapy with autologous adult stem cells in type 2 diabetic patients (Teceldiar study 1). In: 4th International Society for Stem Cell Research Annual Meeting, TorontoGoogle Scholar
  20. Fiegel HC, Lioznov MV, Cortes-Dericks L, Lange C, Kluth D, Fehse B, Zander AR (2003) Liver-specific gene expression in cultured human hematopoietic stem cells. Stem Cells 21:98–104PubMedCrossRefGoogle Scholar
  21. Fodor WL (2003) Tissue engineering and cell based therapies, from the bench to the clinic: the potential to replace, repair and regenerate. Reprod Biol Endocrinol 1:102PubMedCrossRefGoogle Scholar
  22. Fogt F, Beyser KH, Poremba C, Zimmerman RL, Khettry U, Ruschoff J (2002) Recipient-derived hepatocytes in liver transplants: a rare event in sex-mismatched transplants. Hepatology 36:173–176PubMedCrossRefGoogle Scholar
  23. Frankel MS (2000) In search of stem cell policy. Science 287:1397PubMedCrossRefGoogle Scholar
  24. Gordon MY, Levičar N, Pai M, Bachellier P, Dimarakis I, Al-Allaf F, M’Hamdi H, Thalji T, Welsh JP, Marley SB, Davis J, Dazzi F, Marelli-Berg F, Tait P, Playford R, Jiao L, Jensen S, Nicholls JP, Ayav A, Nohandani M, Farzaneh F, Gaken J, Dodge R, Alison M, Apperley JF, Lechler R, Habib NA (2006) Characterisation and clinical application of human CD34+ stem/progenitor cell populations mobilised into the blood by G-CSF. Stem Cells 24:1822–1830PubMedCrossRefGoogle Scholar
  25. Grompe M, Lindstedt S, al-Dhalimy M, Kennaway NG, Papaconstantinou J, Torres-Ramos CA, Ou CN, Finegold M (1995) Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nat Genet 10:453–460PubMedCrossRefGoogle Scholar
  26. Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, Mulligan RC (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394PubMedGoogle Scholar
  27. Halvorsen TL, Beattie GM, Lopez AD, Hayek A, Levine F (2000) Accelerated telomere shortening and senescence in human pancreatic islet cells stimulated to divide in vitro. J Endocrinol 166:103–109PubMedCrossRefGoogle Scholar
  28. Heng BC, Yu H, Yin Y, Lim SG, Cao T (2005) Factors influencing stem cell differentiation into the hepatic lineage in vitro. J Gastroenterol Hepatol 20:975–987PubMedCrossRefGoogle Scholar
  29. Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B, Thyssen S, Gray DA, Bhatia M (2003) Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol 21:763–770PubMedCrossRefGoogle Scholar
  30. Ianus A, Holz GG, Theise ND, Hussain MA (2003) In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 111:843–850PubMedCrossRefGoogle Scholar
  31. International Diabetes Federation (2006) Diabetes atlas. In: http://www.eatlas.idf.org/. Cited 23 Dec 2009Google Scholar
  32. Jang YY, Collector MI, Baylin SB, Diehl AM, Sharkis SJ (2004) Hematopoietic stem cells convert into liver cells within days without fusion. Nat Cell Biol 6:532–539PubMedCrossRefGoogle Scholar
  33. Kanazawa Y, Verma IM (2003) Little evidence of bone marrow-derived hepatocytes in the replacement of injured liver. Proc Natl Acad Sci USA 100[Suppl 1]:11850–11853PubMedCrossRefGoogle Scholar
  34. Korbling M, Katz RL, Khanna A, Ruifrok AC, Rondon G, Albitar M, Champlin RE, Estrov Z (2002) Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N Engl J Med 346:738–746PubMedCrossRefGoogle Scholar
  35. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377PubMedCrossRefGoogle Scholar
  36. Kucia M, Ratajczak J, Reca R, Janowska-Wieczorek A, Ratajczak MZ (2004) Tissue-specific muscle, neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury. Blood Cells Mol Dis 32:52–57PubMedCrossRefGoogle Scholar
  37. Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6:1229–1234PubMedCrossRefGoogle Scholar
  38. Lammert E, Cleaver O, Melton D (2001) Induction of pancreatic differentiation by signals from blood vessels. Science 294:564–567PubMedCrossRefGoogle Scholar
  39. Lechner A, Habener JF (2003) Stem/progenitor cells derived from adult tissues: potential for the treatment of diabetes mellitus. Am J Physiol Endocrinol Metab 284:E259–E266PubMedGoogle Scholar
  40. Lechner A, Yang YG, Blacken RA, Wang L, Nolan AL, Habener JF (2004) No evidence for significant transdifferentiation of bone marrow into pancreatic beta-cells in vivo. Diabetes 53:616–623PubMedCrossRefGoogle Scholar
  41. Lee KD, Kuo TK, Whang-Peng J, Chung YF, Lin CT, Chou SH, Chen JR, Chen YP, Lee OK (2004) In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 40:1275–1284PubMedCrossRefGoogle Scholar
  42. Lee VM, Stoffel M (2003) Bone marrow: an extra-pancreatic hideout for the elusive pancreatic stem cell? J Clin Invest 111:799–801PubMedCrossRefGoogle Scholar
  43. Li L, Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21:605–631PubMedCrossRefGoogle Scholar
  44. Mallet VO, Mitchell C, Mezey E, Fabre M, Guidotti JE, Renia L, Coulombel L, Kahn A, Gilgenkrantz H (2002) Bone marrow transplantation in mice leads to a minor population of hepatocytes that can be selectively amplified in vivo. Hepatology 35:799–804PubMedCrossRefGoogle Scholar
  45. Mathews V, Hanson PT, Ford E, Fujita J, Polonsky KS, Graubert TA (2004) Recruitment of bone marrow-derived endothelial cells to sites of pancreatic beta-cell injury. Diabetes 53:91–98PubMedCrossRefGoogle Scholar
  46. Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290:1779–1782PubMedCrossRefGoogle Scholar
  47. Michalopoulos GK, Bowen WC, Mule K, Luo J (2003) HGF-, EGF-, and dexamethasone-induced gene expression patterns during formation of tissue in hepatic organoid cultures. Gene Expr 11:55–75PubMedGoogle Scholar
  48. Ministry of Health (2001) Annual report of the chief medical officer. In: Ministry of Health Report, UK, LondonGoogle Scholar
  49. Misawa R, Ise H, Takahashi M, Morimoto H, Kobayashi E, Miyagawa S, Ikeda U (2006) Development of liver regenerative therapy using glycoside-modified bone marrow cells. Biochem Biophys Res Commun 342:434–440PubMedCrossRefGoogle Scholar
  50. Miyazaki M, Akiyama I, Sakaguchi M, Nakashima E, Okada M, Kataoka K, Huh NH (2002) Improved conditions to induce hepatocytes from rat bone marrow cells in culture. Biochem Biophys Res Commun 298:24–30PubMedCrossRefGoogle Scholar
  51. Moriscot C, de Fraipont F, Richard MJ, Marchand M, Savatier P, Bosco D, Favrot M, Benhamou PY (2005) Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro. Stem Cells 23:594–603PubMedCrossRefGoogle Scholar
  52. Najimi M, Sokal E (2005) Liver cell transplantation. Minerva Pediatr 57:243–257PubMedGoogle Scholar
  53. Ng IO, Chan KL, Shek WH, Lee JM, Fong DY, Lo CM, Fan ST (2003) High frequency of chimerism in transplanted livers. Hepatology 38:989–998PubMedGoogle Scholar
  54. Oh SH, Miyazaki M, Kouchi H, Inoue Y, Sakaguchi M, Tsuji T, Shima N, Higashio K, Namba M (2000) Hepatocyte growth factor induces differentiation of adult rat bone marrow cells into a hepatocyte lineage in vitro. Biochem Biophys Res Commun 279:500–504PubMedCrossRefGoogle Scholar
  55. Oh SH, Muzzonigro TM, Bae SH, LaPlante JM, Hatch HM, Petersen BE (2004) Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab Invest 84:607–617PubMedCrossRefGoogle Scholar
  56. Ohashi K, Park F, Kay MA (2001) Hepatocyte transplantation: clinical and experimental application. J Mol Med 79:617–630PubMedCrossRefGoogle Scholar
  57. Okumoto K, Saito T, Hattori E, Ito JI, Adachi T, Takeda T, Sugahara K, Watanabe H, Saito K, Togashi H, Kawata S (2003) Differentiation of bone marrow cells into cells that express liver-specific genes in vitro: implication of the Notch signals in differentiation. Biochem Biophys Res Commun 304:691–695PubMedCrossRefGoogle Scholar
  58. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705PubMedCrossRefGoogle Scholar
  59. Pessina A, Eletti B, Croera C, Savalli N, Diodovich C, Gribaldo L (2004) Pancreas developing markers expressed on human mononucleated umbilical cord blood cells. Biochem Biophys Res Commun 323:315–322PubMedCrossRefGoogle Scholar
  60. Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS, Goff JP (1999) Bone marrow as a potential source of hepatic oval cells. Science 284:1168–1170PubMedCrossRefGoogle Scholar
  61. Petersen KF, Shulman GI (2006) Etiology of insulin resistance. Am J Med 119:S10–S16PubMedCrossRefGoogle Scholar
  62. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  63. Pluchino S, Quattrini A, Brambilla E, Gritti A, Salani G, Dina G, Galli R, Del Carro U, Amadio S, Bergami A, Furlan R, Comi G, Vescovi AL, Martino G (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422:688–694PubMedCrossRefGoogle Scholar
  64. Preston SL, Alison MR, Forbes SJ, Direkze NC, Poulsom R, Wright NA (2003) The new stem cell biology: something for everyone. Mol Pathol 56:86–96PubMedCrossRefGoogle Scholar
  65. Ratajczak MZ, Kucia M, Reca R, Majka M, Janowska-Wieczorek A, Ratajczak J (2004) Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells ‘hide out’ in the bone marrow. Leukemia 18:29–40PubMedCrossRefGoogle Scholar
  66. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18:399–404PubMedCrossRefGoogle Scholar
  67. Ruhnke M, Ungefroren H, Nussler A, Martin F, Brulport M, Schormann W, Hengstler JG, Klapper W, Ulrichs K, Hutchinson JA, Soria B, Parwaresch RM, Heeckt P, Kremer B, Fandrich F (2005) Differentiation of in vitro-modified human peripheral blood monocytes into hepatocyte-like and pancreatic islet-like cells. Gastroenterology 128:1774–1786PubMedCrossRefGoogle Scholar
  68. Ryan EA, Lakey JR, Paty BW, Imes S, Korbutt GS, Kneteman NM, Bigam D, Rajotte RV, Shapiro AM (2002) Successful islet transplantation: continued insulin reserve provides long-term glycemic control. Diabetes 51:2148–2157PubMedCrossRefGoogle Scholar
  69. Sakaida I, Terai S, Yamamoto N, Aoyama K, Ishikawa T, Nishina H, Okita K (2004) Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice. Hepatology 40:1304–1311PubMedCrossRefGoogle Scholar
  70. Schwartz RE, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T, Lenvik T, Johnson S, Hu WS, Verfaillie CM (2002) Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest 109:1291–1302PubMedCrossRefGoogle Scholar
  71. Sell S (2001) Heterogeneity and plasticity of hepatocyte lineage cells. Hepatology 33:738–750PubMedCrossRefGoogle Scholar
  72. Sipione S, Eshpeter A, Lyon JG, Korbutt GS, Bleackley RC (2004) Insulin expressing cells from differentiated embryonic stem cells are not beta cells. Diabetologia 47:499–508PubMedCrossRefGoogle Scholar
  73. Taneera J, Rosengren A, Renstrom E, Nygren JM, Serup P, Rorsman P, Jacobsen SE (2006) Failure of transplanted bone marrow cells to adopt a pancreatic beta-cell fate. Diabetes 55:290–296PubMedCrossRefGoogle Scholar
  74. Tang DQ, Cao LZ, Burkhardt BR, Xia CQ, Litherland SA, Atkinson MA, Yang LJ (2004) In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes 53:1721–1732PubMedCrossRefGoogle Scholar
  75. Terai S, Sakaida I, Yamamoto N, Omori K, Watanabe T, Ohata S, Katada T, Miyamoto K, Shinoda K, Nishina H, Okita K (2003) An in vivo model for monitoring trans-differentiation of bone marrow cells into functional hepatocytes. J Biochem (Tokyo) 134:551–558PubMedCrossRefGoogle Scholar
  76. Terai S, Ishikawa T, Omori K, Aoyama K, Marumoto Y, Urata Y, Yokoyama Y, Uchida K, Yamasaki T, Fujii Y, Okita K, Sakaida I (2006) Improved liver function in liver cirrhosis patients after autologous bone marrow cell infusion therapy. Stem Cells 24:2292–2298PubMedCrossRefGoogle Scholar
  77. Theise ND, Badve S, Saxena R, Henegariu O, Sell S, Crawford JM, Krause DS (2000a) Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology 31:235–240PubMedCrossRefGoogle Scholar
  78. Theise ND, Nimmakayalu M, Gardner R, Illei PB, Morgan G, Teperman L, Henegariu O, Krause DS (2000b) Liver from bone marrow in humans. Hepatology 32:11–16PubMedCrossRefGoogle Scholar
  79. Till JE, McCulloch E (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222PubMedCrossRefGoogle Scholar
  80. Vig P, Russo FP, Edwards RJ, Tadrous PJ, Wright NA, Thomas HC, Alison MR, Forbes SJ (2006) The sources of parenchymal regeneration after chronic hepatocellular liver injury in mice. Hepatology 43:316–324PubMedCrossRefGoogle Scholar
  81. Wagers AJ, Sherwood RI, Christensen JL, Weissman IL (2002) Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297:2256–2259PubMedCrossRefGoogle Scholar
  82. Wang X, Ge S, McNamara G, Hao QL, Crooks GM, Nolta JA (2003) Albumin-expressing hepatocyte-like cells develop in the livers of immune-deficient mice that received transplants of highly purified human hematopoietic stem cells. Blood 101:4201–4208PubMedCrossRefGoogle Scholar
  83. Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S, Korte T, Hornig B, Messinger D, Arseniev L, Hertenstein B, Ganser A, Drexler H (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364:141–148PubMedCrossRefGoogle Scholar
  84. Wu T, Cieply K, Nalesnik MA, Randhawa PS, Sonzogni A, Bellamy C, Abu-Elmagd K, Michalopolous GK, Jaffe R, Kormos RL, Gridelli B, Fung JJ, Demetris AJ (2003) Minimal evidence of transdifferentiation from recipient bone marrow to parenchymal cells in regenerating and long-surviving human allografts. Am J Transplant 3:1173–1181PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • N. Levičar
    • 1
    Email author
  • I. Dimarakis
    • 1
  • C. Flores
    • 2
  • J. Tracey
    • 1
  • M. Y. Gordon
    • 2
  • N. A. Habib
    • 1
  1. 1.Department of Surgical Oncology and Technology, Faculty of Medicine, Imperial College LondonHammersmith HospitalLondonUK
  2. 2.Department of Haematology, Faculty of Medicine, Imperial College LondonHammersmith HospitalLondonUK

Personalised recommendations