Skip to main content

Biochemical Detection of cGMP From Past to Present: An Overview

  • Chapter
cGMP: Generators, Effectors and Therapeutic Implications

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 191))

Abstract

Cyclic guanosine monophosphate (cGMP), generated via the guanylate cyclase (GC)-catalyzed conversion from GTP, is unequivocally recognized as crucial second messenger, intimately involved in the regulation of a broad range of physiological processes such as long term potentiation, blood pressure regulation, or platelet aggregation (for review: Hobbs 2000). Since its first identification in rat urine by Ashman and co-workers (1963), various approaches have been conceived and established to quantify cGMP in biological samples, or to detect cGMP as the reaction product of enzymatic assays, allowing the determination of kinetic parameters. These approaches have evolved from laborious handling of small numbers of samples with average sensitivity to highly developed biochemical detection assays allowing the processing of very large numbers of samples. The present article focuses upon the history of biochemical cGMP detection from the pioneering work of the early years to the actual state-of-the-art approaches for the detection of this important biological messenger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alajoutsijarvi A, Nissinen E (1987) Determination of cyclic nucleotide phosphodiesterase activity by high-performance liquid chromatography. Anal Biochem 165:128–132

    Article  PubMed  CAS  Google Scholar 

  • Asakawa T, Ruiz J, Ho RJ (1978) Epinephrine-induced elevation of guanosine 3′,5–-cyclic monophosphate in isolated fat cells of rat. Proc Natl Acad Sci USA 75:2684–2688

    Article  PubMed  CAS  Google Scholar 

  • Ashman DF, Lipton R, Melicow MM, T.D. P (1963) Isolation of adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate from rat urine. Biochem Biophys Res Commun 11: 330–334

    Article  PubMed  CAS  Google Scholar 

  • Bazin H, Preaudat M, Trinquet E, Mathis G (2001) Homogeneous time resolved fluorescence resonance energy transfer using rare earth cryptates as a tool for probing molecular interactions in biology. Spectrochim Acta A Mol Biomol Spectrosc 57:2197–2211

    Article  PubMed  CAS  Google Scholar 

  • Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520

    Article  PubMed  CAS  Google Scholar 

  • Bloch W, Mehlhorn U, Krahwinkel A, Reiner M, Dittrich M, Schmidt A, Addicks K (2001) Ischemia increases detectable endothelial nitric oxide synthase in rat and human myocardium. Nitric Oxide 5:317–333

    Article  PubMed  CAS  Google Scholar 

  • Bloom FE, Hoffer BJ, Battenberg ER, Siggins GR, Steiner AL, Parker CW, Wedner HJ (1972) Adenosine 3′,5′-monophosphate is localized in cerebellar neurons: immunofluorescence evidence. Science 177:436–438

    Article  PubMed  CAS  Google Scholar 

  • Bohme E (1970) [Guanyl cyclase. Biosynthesis of guanosine-3′, 5′-monophosphate in kidney and other rat tissues]. Eur J Biochem 14:422–429

    Article  PubMed  CAS  Google Scholar 

  • Bosworth N, Towers P (1989) Scintillation proximity assay. Nature 341:167–168

    Article  PubMed  CAS  Google Scholar 

  • Brooker G, Harper JF, Terasaki WL, Moylan RD (1979) Radioimmunoassay of cyclic AMP and cyclic GMP Adv Cyclic Nucleotide Res 10:1–33

    CAS  Google Scholar 

  • Carpenter JW, Laethem C, Hubbard FR, Eckols TK, Baez M, McClure D, Nelson DL, Johnston PA (2002) Configuring radioligand receptor binding assays for HTS using scintillation proximity assay technology. Methods Mol Biol 190:31–4

    PubMed  CAS  Google Scholar 

  • Chan-Palay V, Palay SL (1979) Immunocytochemical localization of cyclic GMP: light and electron microscope evidence for involvement of neuroglia. Proc Natl Acad Sci USA 76:1485–1488

    Article  PubMed  CAS  Google Scholar 

  • Cumming R, Dickison S, Arbuthnott G (1980) Cyclic nucleotide losses during tissue processing for immunohistochemistry. J Histochem Cytochem 28:54–55

    PubMed  CAS  Google Scholar 

  • de Vente J, Steinbusch HW (1992) On the stimulation of soluble and particulate guanylate cyclase in the rat brain and the involvement of nitric oxide as studied by cGMP immunocytochemistry. Acta Histochem 92:13–38

    PubMed  Google Scholar 

  • de Vente J, Steinbusch HW, Schipper J (1987) A new approach to immunocytochemistry of 3′, 5′- cyclic guanosine monophosphate: preparation, specificity, and initial application of a new antiserum against formaldehyde-fixed 3′,5′-cyclic guanosine monophosphate. Neuroscience 22:361–373

    Article  PubMed  Google Scholar 

  • de Vente J, Young HM, Steinbusch HWM (1996) Immunohistochemical visualization of cyclic nucleotides. Methods Neurosci 31:68–79

    Article  Google Scholar 

  • Durham JP (1976) Guanylate cyclase: assay and properties of the particulate and supernatant enzymes in mouse parotid. Eur J Biochem 61:535–544

    Article  PubMed  CAS  Google Scholar 

  • Eglen RM (2002) Enzyme fragment complementation: a flexible high throughput screening assay technology. Assay Drug Dev Technol 1:97–104

    Article  PubMed  CAS  Google Scholar 

  • Enz A, Shapiro G, Chappuis A, Dattler A (1994) Nonradioactive assay for protein phosphatase 2B (calcineurin) activity using a partial sequence of the subunit of cAMP-dependent protein kinase as substrate. Anal Biochem 216:147–153

    Article  PubMed  CAS  Google Scholar 

  • Evgenov OV, Pacher P, Schmidt PM, Hasko G, Schmidt HH, Stasch JP (2006) NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat Rev Drug Discov 5:755–768

    Article  PubMed  CAS  Google Scholar 

  • Fan F, Wood KV (2007) Bioluminescent assays for high-throughput screening. Assay Drug Dev Technol 5:127–136

    Article  PubMed  CAS  Google Scholar 

  • Fleischman D (1982) Localization and assay of guanylate cyclase. Methods Enzymol 81:522–526

    Article  PubMed  CAS  Google Scholar 

  • Frandsen EK, Krishna G (1976) A simple ultrasensitive method for the assay of cyclic AMP and cyclic GMP in tissues. Life Sci 18:529–541

    Article  PubMed  CAS  Google Scholar 

  • Friebe A, Koesling D (1998) Mechanism of YC-1-induced activation of soluble guanylyl cyclase. Mol Pharmacol 53:123–127

    PubMed  CAS  Google Scholar 

  • Gabriel D, Vernier M, Pfeifer MJ, Dasen B, Tenaillon L, Bouhelal R (2003) High throughput screening technologies for direct cyclic AMP measurement. Assay Drug Dev Technol 1: 291–303

    Article  PubMed  CAS  Google Scholar 

  • Gerzer R, Hofmann F, Schultz G (1981) Purification of a soluble, sodium-nitroprusside-stimulated guanylate cyclase from bovine lung. Eur J Biochem 116:479–486

    Article  PubMed  CAS  Google Scholar 

  • Ghofrani HA, Osterloh IH, Grimminger F (2006) Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. Nat Rev Drug Discov 5:689–702

    Article  PubMed  CAS  Google Scholar 

  • Gilman AG, Murad F (1974) Assay of cyclic nucleotides by receptor protein binding displacement. Methods Enzymol 38:49–61

    Article  PubMed  CAS  Google Scholar 

  • Goldberg ML (1977) Radioimmunoassay for adenosine 3′, 5′-cyclic monophosphate and guanosine 3′,5′-cyclic monophosphate in human blood, urine, and cerebrospinal fluid. Clin Chem 23: 576–580

    PubMed  CAS  Google Scholar 

  • Goldberg ND, Dietz SB, O'Toole AG (1969) Cyclic guanosine 3′,5′-monophosphate in mammalian tissues and urine. J Biol Chem 244:4458–4466

    PubMed  CAS  Google Scholar 

  • Goldberg ND, Haddox MK (1974) Quantitation of cyclic GMP by enzymatic cycling. Methods Enzymol 38:73–84

    Article  PubMed  CAS  Google Scholar 

  • Golla R, Seethala R (2002) A homogeneous enzyme fragment complementation cyclic AMP screen for GPCR agonists. J Biomol Screen 7:515–525

    Article  PubMed  CAS  Google Scholar 

  • Hadden JW, Hadden EM, Sadlik JR, Coffey RG (1976) Effects of concanavalin A and a succiny-lated derivative on lymphocyte proliferation and cyclic nucleotide levels. Proc Natl Acad Sci USA 73:1717–1721

    Article  PubMed  CAS  Google Scholar 

  • Hardman JG, Davis JW, Sutherland EW (1966) Measurement of guanosine 3′,5′-monophosphate and other cyclic nucleotides. Variations in urinary excretion with hormonal state of the rat. J Biol Chem 241:4812–4815

    PubMed  CAS  Google Scholar 

  • Harper JF, Brooker G (1975) Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2'0 acetylation by acetic anhydride in aqueous solution. J Cyclic Nucleotide Res 1:207–218

    PubMed  CAS  Google Scholar 

  • Hart HE, Greenwald EB (1979a) Scintillation proximity assay (SPA)-a new method of immunoassay. Direct and inhibition mode detection with human albumin and rabbit antihuman albumin. Mol Immunol 16:265–267

    Article  CAS  Google Scholar 

  • Hart HE, Greenwald EB (1979b) Scintillation-proximity assay of antigen-antibody binding kinetics: concise communication. J Nucl Med 20:1062–1065

    CAS  Google Scholar 

  • Hemmila I, Webb S (1997) Time-resolved fluorometry: an overview of the labels and core technologies for drug screening applications. Drug Discov Today 2:383–381

    Article  Google Scholar 

  • Hobbs A (2000) Soluble guanylate cyclase. Emerg Ther Targets 4:735–749

    Article  CAS  Google Scholar 

  • Horton JK, Martin RC, Kalinka S, Cushing A, Kitcher JP, O'Sullivan MJ, Baxendale PM (1992) Enzyme immunoassays for the estimation of adenosine 3′, 5′ cyclic monophosphate and guanosine 3′, 5′ cyclic monophosphate in biological fluids. J Immunol Methods 155:31–40

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa E, Ishikawa S, Davis JW, Sutherland EW (1969) Determination of guanosine 3′, 5′- monophosphate in tissues and of guanyl cyclase in rat intestine. J Biol Chem 244:6371–6376

    PubMed  CAS  Google Scholar 

  • Karczewski P, Krause EG (1978) A sensitive method for the assay of guanylate cyclase activity. Acta Biol Med Ger 37:961–967

    PubMed  CAS  Google Scholar 

  • Kleine TO, Kroh U (1978) Time saving protein binding assay for the simultaneous determination of guanosine 3′:5′-monophosphate (cGMP) and adenosine 3′:5′-monophosphate (cAMP) in human urine. J Clin Chem Clin Biochem 16:657–661

    PubMed  CAS  Google Scholar 

  • Koch KW, Stryer L (1988) Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions. Nature 334:64–66

    Article  PubMed  CAS  Google Scholar 

  • Koglin M, Stasch JP, Behrends S (2002) BAY 41–2272 activates two isoforms of nitric oxide-sensitive guanylyl cyclase. Biochem Biophys Res Commun 292:1057–1062

    Article  PubMed  CAS  Google Scholar 

  • Korkmaz Y, Baumann MA, Steinritz D, Schroder H, Behrends S, Addicks K, Schneider K, Raab WH, Bloch W (2005) NO-cGMP signaling molecules in cells of the rat molar dentin-pulp complex. J Dent Res 84:618–623

    Article  PubMed  CAS  Google Scholar 

  • Krishna G, Weiss B, Brodie BB (1968) A simple, sensitive method for the assay of adenyl cyclase. J Pharmacol Exp Ther 163:379–385

    PubMed  CAS  Google Scholar 

  • Krishnan N, Krishna G (1976) A simple and sensitive assay for guanylate cyclase. Anal Biochem 70:18–31

    Article  PubMed  CAS  Google Scholar 

  • Kumar M, Hsiao K, Vidugiriene J, Goueli SA (2007) A bioluminescent-based, HTS-compatible assay to monitor G-protein-coupled receptor modulation of cellular cyclic AMP. Assay Drug Dev Technol 5:237–245

    Article  PubMed  CAS  Google Scholar 

  • Lorenzetti R, Lilla S, Donato JL, de Nucci G (2007) Simultaneous quantification of GMP, AMP, cyclic GMP and cyclic AMP by liquid chromatography coupled to tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 859:37–41

    Article  CAS  Google Scholar 

  • Lu ZH, Zhang R, Diasio RB (1992) Purification and characterization of dihydropyrimidine dehydrogenase from human liver. J Biol Chem 267:17102–17109

    PubMed  CAS  Google Scholar 

  • Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, Chepenik KP, Waldman SA (2000) Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 52:375–414

    PubMed  CAS  Google Scholar 

  • Martin E, Sharina I, Kots A, Murad F (2003) A constitutively activated mutant of human soluble guanylyl cyclase (sGC): implication for the mechanism of sGC activation. Proc Natl Acad Sci USA 100:9208–9213

    Article  PubMed  CAS  Google Scholar 

  • Mathis G (1993) Rare earth cryptates and homogeneous fluoroimmunoassays with human sera. Clin Chem 39:1953–1959

    PubMed  CAS  Google Scholar 

  • Mathis G (1995) Probing molecular interactions with homogeneous techniques based on rare earth cryptates and fluorescence energy transfer. Clin Chem 41:1391–1397

    PubMed  CAS  Google Scholar 

  • Mathis G (1999) HTRF(R) technology. J Biomol Screen 4:309–314

    Article  PubMed  CAS  Google Scholar 

  • Mehlhorn U, Bloch W, Krahwinkel A, LaRose K, Geissler HJ, Hekmat K, Addicks K, de Vivie ER (2000) Activation of myocardial constitutive nitric oxide synthase during coronary artery surgery. Eur J Cardiothorac Surg 17:305–311

    Article  PubMed  CAS  Google Scholar 

  • Murad F, Manganiello V, Vaughan M (1971) A simple, sensitive protein-binding assay for guano-sine 3′:5′-monophosphate. Proc Natl Acad Sci USA 68:736–739

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa K, Sano M (1974) Studies on guanylate cyclase: A new assay method for guanylate cyclase and properties of the cyclase from rat brain. J Biol Chem 249:4207–4211

    PubMed  CAS  Google Scholar 

  • Neumeyer K, Kirkpatrick P (2004) Tadalafil and vardenafil. Nat Rev Drug Discov 3:295–296

    Article  PubMed  CAS  Google Scholar 

  • Ohba Y, Soda K, Zaitsu K (2001) A sensitive assay of human blood platelet cyclic nucleotide phosphodiesterase activity by HPLC using fluorescence derivatization and its application to assessment of cyclic nucleotide phosphodiesterase inhibitors. Biol Pharm Bull 24:567–569

    Article  PubMed  CAS  Google Scholar 

  • Ortez RA (1980) Residual cyclic nucleotide associated with tissues after exposure to aqueous buffer analogous to that used in immunocytochemistry. J Cyclic Nucleotide Res 6:93–104

    PubMed  CAS  Google Scholar 

  • Ozawa T, Kaihara A, Sato M, Tachihara K, Umezawa Y (2001) Split luciferase as an optical probe for detecting protein-protein interactions in mammalian cells based on protein splicing. Anal Chem 73:2516–2521

    Article  PubMed  CAS  Google Scholar 

  • Pazhanisamy S, Stuver CM, Livingston DJ (1995) Automation of a high-performance liquid chromatography-based enzyme assay: evaluation of inhibition constants for human immunodeficiency virus-1 protease inhibitors. Anal Biochem 229:48–53

    Article  PubMed  CAS  Google Scholar 

  • Pietta PG, Mauri PL, Gardana C, Benazzi L (1997) Assay of soluble guanylate cyclase activity by isocratic high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 690: 343–347

    Article  PubMed  CAS  Google Scholar 

  • Pradelles P, Grassi J, Chabardes D, Guiso N (1989) Enzyme immunoassays of adenosine cyclic 3′,5′-monophosphate and guanosine cyclic 3′,5′-monophosphate using acetylcholinesterase. Anal Chem 61:447–453

    Article  PubMed  CAS  Google Scholar 

  • Remy I, Michnick SW (1999) Clonal selection and in vivo quantitation of protein interactions with protein-fragment complementation assays. Proc Natl Acad Sci USA 96:5394–5399

    Article  PubMed  CAS  Google Scholar 

  • Rabinovitch A, Blondel B, Murray T, Mintz DH (1980) Cyclic adenosine-3′,5′-monophosphate stimulates islet B cell replication in neonatal rat pancreatic monolayer cultures. J Clin Invest 66:1065–1071

    Article  PubMed  CAS  Google Scholar 

  • Richman RA, Kopf GS, Hamet P, Johnson RA (1980) Preparation of cyclic nucleotide antisera with thyroglobulin-cyclic nucleotide conjugates. J Cyclic Nucleotide Res 6:461–468

    PubMed  CAS  Google Scholar 

  • Rojo-Niersbach E, Morley D, HeckS, Lehming N(2000) Anew method for the selection of protein interactions in mammalian cells. Biochem J 348(Pt 3):585–590

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg EM, LaVallee G, Weber P, Tucci SM (1979) Studies on the specificity of immunohistochemical techniques for cyclic AMP and cyclic GMP. J Histochem Cytochem 27:913–923

    PubMed  CAS  Google Scholar 

  • Schindler U, Strobel H, Schonafinger K, Linz W, Lohn M, Martorana PA, Rutten H, Schindler PW, Busch AE, Sohn M, Topfer A, Pistorius A, Jannek C, Mulsch A (2006) Biochemistry and pharmacology of novel anthranilic acid derivatives activating heme-oxidized soluble guanylyl cyclase. Mol Pharmacol 69:1260–1268

    Article  PubMed  CAS  Google Scholar 

  • Schmidt PM, Schramm M, Schroder H, Wunder F, Stasch JP (2004) Identification of residues crucially involved in the binding of the heme moiety of soluble guanylate cyclase. J Biol Chem 279:3025–3032

    Article  PubMed  CAS  Google Scholar 

  • Schultz G, Bohme E, Munske K (1969) Guanyl cyclase. Determination of enzyme activity. Life Sci 8:1323–1332

    Article  PubMed  CAS  Google Scholar 

  • Schultz G, Hardman JG, Schultz K, Davis JW, Sutherland EW (1973) A new enzymatic assay for guanosine 3′:5′-cyclic monophosphate and its application to the ductus deferens of the rat. Proc Natl Acad Sci USA 70:1721–1725

    Article  PubMed  CAS  Google Scholar 

  • Seya K, Furukawa KI, Motomura S (1999) A fluorometric assay for cyclic guanosine 3′, 5′-monophosphate incorporating a Sep-Pak cartridge and enzymatic cycling. Anal Biochem 272:243–249

    Article  PubMed  CAS  Google Scholar 

  • Soda K, Ohba Y, Zaitsu K (2001) Assay of human platelet guanylate cyclase activity by highperformance liquid chromatography with fluorescence derivatization. J Chromatogr B Biomed Sci Appl 752:55–60

    Article  PubMed  CAS  Google Scholar 

  • Stasch JP, Schmidt PM, Nedvetsky PI, Nedvetskaya TY, H SA, Meurer S, Deile M, Taye A, Knorr A, Lapp H, Muller H, Turgay Y, Rothkegel C, Tersteegen A, Kemp-Harper B, Muller-Esterl W, Schmidt HH (2006) Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels. J Clin Invest 116:2552–2561

    Article  PubMed  CAS  Google Scholar 

  • Steiner AL, Kipnis DM, Utiger R, Parker C (1969) Radioimmunoassay for the measurement of adenosine 3′, 5′-cyclic phosphate. Proc Natl Acad Sci USA 64:367–373

    Article  PubMed  CAS  Google Scholar 

  • Steiner AL, Parker CW, Kipnis DM (1970) The measurement of cyclic nucleotides by radioimmunoassay. Adv Biochem Psychopharmacol 3:89–111

    PubMed  CAS  Google Scholar 

  • Steiner AL, Parker CW, Kipnis DM (1972a) Radioimmunoassay for cyclic nucleotides. I. Preparation of antibodies andiodinated cyclic nucleotides. J Biol Chem 247:1106–1113

    CAS  Google Scholar 

  • Steiner AL, Wehmann RE, Parker CW, Kipnis DM (1972b) Radioimmunoassay for the measurement of cyclic nucleotides. Adv Cyclic Nucleotide Res 2:51–61

    CAS  Google Scholar 

  • Tian M, Yang XL (2006) C-type natriuretic peptide modulates glutamate receptors on cultured rat retinal amacrine cells. Neuroscience 139:1211–1220

    Article  PubMed  CAS  Google Scholar 

  • Trinquet E, Mathis G (2006) Fluorescence technologies for the investigation of chemical libraries. Mol Biosyst 2:380–387

    Article  PubMed  CAS  Google Scholar 

  • Trinquet E, Maurin F, Preaudat M, Mathis G (2001) Allophycocyanin 1 as a near-infrared fluorescent tracer: isolation, characterization, chemical modification, and use in a homogeneous fluorescence resonance energy transfer system. Anal Biochem 296:232–244

    Article  PubMed  CAS  Google Scholar 

  • Tsugawa M, Moriwaki K, Iida S, Fujii H, Gomi M, Tarui S, Yamane R, Fujimoto M (1991) An enzyme-linked immunosorbent assay (ELISA) for guanosine 3′,5′-cyclic monophosphate (cGMP) in human plasma and urine using monoclonal antibody. J Immunoassay 12:263–276

    Article  PubMed  CAS  Google Scholar 

  • Udenfriend S, Gerber L, Nelson N (1987) Scintillation proximity assay: a sensitive and continuous isotopic method for monitoring ligand/receptor and antigen/antibody interactions. Anal Biochem 161:494–500

    Article  PubMed  CAS  Google Scholar 

  • Udenfriend S, Gerber LD, Brink L, Spector S (1985) Scintillation proximity radioimmunoassay utilizing 125I-labeled ligands. Proc Natl Acad Sci USA 82:8672–8676

    Article  PubMed  CAS  Google Scholar 

  • Ullman EF, KirakossianH, Singh S, WuZP, Irvin BR, Pease JS, Switchenko AC, Irvine JD, Dafforn A, Skold CN, et al. (1994) Luminescent oxygen channeling immunoassay: measurement of particle binding kinetics by chemiluminescence. Proc Natl Acad Sci USA 91:5426–5430

    Article  PubMed  CAS  Google Scholar 

  • Ullman EF, Kirakossian H, Switchenko AC, Ishkanian J, Ericson M, Wartchow CA, Pirio M, Pease J, Irvin BR, Singh S, Singh R, Patel R, Dafforn A, Davalian D, Skold C, Kurn N, Wagner DB (1996) Luminescent oxygen channeling assay (LOCI): sensitive, broadly applicable homogeneous immunoassay method. Clin Chem 42:1518–1526

    PubMed  CAS  Google Scholar 

  • Ward A, Brenner M (1977) Guanylate cyclase from Dictyostelium discoideum. Life Sci 21: 997–1008

    Article  PubMed  CAS  Google Scholar 

  • Weber M, Ferrer M, Zheng W, Inglese J, Strulovici B, Kunapuli P (2004) A 1536-well cAMP assay for Gs- and Gi-coupled receptors using enzyme fragmentation complementation. Assay Drug Dev Technol 2:39–49

    Article  PubMed  CAS  Google Scholar 

  • Weber M, Muthusubramaniam L, Murray J, Hudak E, Kornienko O, Johnson EN, Strulovici B, Kunapuli P (2007) Ultra-high-throughput screening for antagonists of a Gi-coupled receptor in a 2.2-microl 3,456-well plate format cyclicAMP assay. Assay Drug Dev Technol 5:117–125

    Article  PubMed  CAS  Google Scholar 

  • Wedner HF, Hoffer BJ, Battenberg EB, Steiner AL, Parker CW, Bloom FE (1972) A method for detecting intracellular cyclic adenosine monophosphate by immunofluorescence. J Histochem Cytochem 20:293–295

    PubMed  CAS  Google Scholar 

  • Wehrman T, Kleaveland B, Her JH, Balint RF, Blau HM (2002) Protein-protein interactions monitored in mammalian cells via complementation of beta -lactamase enzyme fragments. Proc Natl Acad Sci USA 99:3469–3474

    Article  PubMed  CAS  Google Scholar 

  • Wellard J, Blind B, Hamprech B (2004) An enzyme-linked immunosorbent assay for the rapid quantification of intracellular and extracellular guanosine 3′,5′-cyclic monophosphate in cultured glial cells. Neurochem Res 29:2177–2187

    Article  PubMed  CAS  Google Scholar 

  • Werkstrom V, Svensson A, Andersson KE, Hedlund P (2006) Phosphodiesterase 5 in the female pig and human urethra: morphological and functional aspects. BJU Int 98:414–423

    Article  PubMed  CAS  Google Scholar 

  • White AA, Aurbach GD (1969) Detection of guanyl cyclase in mammalian tissues. Biochim Bio-phys Acta 191:686–697

    CAS  Google Scholar 

  • White AA, Zenser TV (1971) Separation of cyclic 3′,5′-nucleoside monophosphates from other nucleotides on aluminum oxide columns. Application to the assay of adenyl cyclase and guanyl cyclase. Anal Biochem 41:372–396

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto I, Tsuji J, Takai T, Fujimoto M (1982) Double antibody enzyme immunoassay for the quantitation of adenosine 3′, 5′-cyclic monophosphate (cyclic AMP) and guanosine 3′, 5′-cyclic monophosphate (cyclic GMP) in tissue and plasma. J Immunoassay 3:173–196

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Schmidt, P.M. (2009). Biochemical Detection of cGMP From Past to Present: An Overview. In: Schmidt, H.H.H.W., Hofmann, F., Stasch, JP. (eds) cGMP: Generators, Effectors and Therapeutic Implications. Handbook of Experimental Pharmacology, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68964-5_10

Download citation

Publish with us

Policies and ethics