Skip to main content

Risk Assessment and Carcinogenesis Modelling

  • Chapter
Radiotherapy for Non-Malignant Disorders

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 2140 Accesses

Abstract

The detrimental effects of exposure to ionising radiation are categorised into deterministic and stochastic effects [16]. It is well established that deterministic effects such as cataracts, skin erythema and radiation syndromes will only occur when a threshold dose is exceeded and that the severity of the damage is dose dependent. Special precautions have to be taken in interventional radiology (see, e.g., [37, 38]) to avoid skin damage. Stochastic effects, which are of a random or statistical nature, include carcinogenesis and hereditary effects. The severity of the stochastic effects is not affected by the dose. The probability of stochastic effects generally increases with dose, without a threshold in the low dose region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aknsu M, Dirican B, Bora H et al (2003) The risk of radiation-induced carcinogenesis after external beam radiotherapy of Graves’ orbitopathy. Ophthalmic Res 35:150–153

    Article  Google Scholar 

  2. Alavi A, Heyman S, Ka Ming T et al (1993) Bone marrow imaging. Diagnostic nuclear medicine, 3rd edn, vol 2. Williams and Wilkins, Baltimore

    Google Scholar 

  3. Blank LECM, Barendsen GW, Prummel MF et al (1996) Probable risk of tumour induction after retroorbital irradiation for Graves’ ophthalmopathy. Radiother Oncol 40:187–188

    Article  PubMed  CAS  Google Scholar 

  4. Brada M, Ford D, Ashley S (1992) Risk of second brain tumour after conservative surgery and radiotherapy for pituitary adenoma. Br Med J 304:1343–1346

    Article  CAS  Google Scholar 

  5. Briesmeister JF (ed) (2000) MCNP-A general Monte Carlo N-particle transport code. Version 4C. LA-13709-M. Los Alamos National Laboratory (LANL), Los Alamos, NM

    Google Scholar 

  6. Broerse JJ, Coppola M (1996) Differences in wT for radiation carcinogenesis in various organs. In: Hagen U, Harder D, Jung H and Streffer C (eds) Proc lOth Int Congress Radiât Res:177–180

    Google Scholar 

  7. Broerse JJ, van Bekkum DW, Hollander CF et al (1978) Mortality of monkeys after exposure to fission neutrons and the effect of autologous bone marrow transplantation. Int J Radiât Biol 34:253–264

    Article  CAS  Google Scholar 

  8. Broerse JJ, Hennen LA, van Zwieten MJ (1985) Radiation carcinogenesis in experimental animals and its implications for radiation protection. Int J Radiât Biol 48:167–187

    Article  CAS  Google Scholar 

  9. Broerse JJ, Bartstra RW, van Bekkum DW, et al (2000) The carcinogenic risk of high dose total body irradiation in non-human primates. Radiother Oncol 54:247–253

    Article  PubMed  CAS  Google Scholar 

  10. Carter LL, Cashwell ED (1975) Particle transport simulation with the Monte Carlo method. ERDA Critical Review Series, TID-26607. National Technical Information Service (NTIS), Springfield, VA

    Google Scholar 

  11. Cristy M (1980) Mathematical phantoms representing children of various ages for use in estimates of internal dose. RNL/NUREG/TM-367. Oak Ridge National Laboratory (ORNL), Oak Ridge, TN

    Google Scholar 

  12. Curtis RE, Rowling PA, Deeg HJ, et al (1997) Solid cancers after bone marrow transplantation. N Engl J Med 336:897–904

    Article  PubMed  CAS  Google Scholar 

  13. Darroudi F, Natarajan AT, Bentvelzen PAJ, et al (1998) Detection of total-and partial-body irradiation in a monkey model: a comparative study of chromosomal aberration, micronucleus and premature chromosome condensation assays. Int J Radiât Biol 74:207–215

    Article  PubMed  CAS  Google Scholar 

  14. DiMajo V, Coppola M and Rebessi S et al (1986) Dose-response relationships of radiation induced Harderian gland tumours and myeloid leukaemia of the CBA/Cne mouse. J Natl Cancer Inst 76:995–963

    Google Scholar 

  15. Eckerman KF, Cristy M, Ryman JC (1996) The ORNL mathematical phantom series. Oak Ridge National Laboratory (ORNL), Oak Ridge, TN

    Google Scholar 

  16. ICRP (1975) Reference man: anatomical, physiological and metabolic characteristics, ICRP Publication 23. Pergamon Press, Oxford, UK

    Google Scholar 

  17. ICRP (1977) Recommendations of the International Commission on Radiological Protection. ICRP Publication 26. Annals of the ICRP 1, 3. Pergamon Press, Oxford, UK

    Google Scholar 

  18. ICRP (1991) 1990 recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Annals of the ICRP 21,1-3. Pergamon Press, Oxford, UK

    Google Scholar 

  19. ICRU (1989) International Commission on Radiation Units and Measurements. Tissue substitutes in radiation dosimetry and measurements. ICRU Report 44, Bethesda, MD

    Google Scholar 

  20. Kellerer AM, Chmelevsky D (1982). Analysis of tumor rates and incidences-A survey of concepts and methods. In: Broerse JJ, Gerber GB (eds) Neutron carcinogenesis, pp 209-231. Commission of the European Communities, Luxembourg

    Google Scholar 

  21. Kellerer AM, Rühm W (2002). Evolution in zigzag-the changing state of A-bomb dosimetery. J Radiol Prot 22:337–339

    Article  PubMed  CAS  Google Scholar 

  22. Kramer R, Zankl M, Williams G et al (1986) The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods. Part 1: the male (Adam) and female (Eva) adult mathematical phantoms. GSF Bericht S-885, Institut für Strahlenschutz, München, Germany

    Google Scholar 

  23. Leer JWH, Van Houtte P, Davelaar J (1998) Indications and treatment schedules for irradiation of benign diseases: a survey. Radiother Oncol 48:249–257

    Article  PubMed  CAS  Google Scholar 

  24. Mole RH (1984) Dose-response relationships. In: Boice JD, Fraumeni JF (eds) Radiation carcinogenesis: epidemiology and biological significance. Raven Press, New York, pp 403–420

    Google Scholar 

  25. Nelson WR, Hirayama H and Rogers DWO (1985) The EGS4 code system. SLAC-265 Stanford Linear Accelerator Center (SLAC), Stanford University, Stanford, CA

    Google Scholar 

  26. Petersen I A, Kriss JP, RossMcDongall I, et al (1990) Prognostic factors in the radiotherapy of Graves’ opthalmopathy. Int J Radiot Oncol Biol Phys 19:259–264

    Article  CAS  Google Scholar 

  27. Ron E, Modan B, Boice JD, et al (1988). Tumors of the brain and nervous system after radiotherapy in childhood. N Engl J Med 319:1033–1039

    PubMed  CAS  Google Scholar 

  28. Schaefer U, Hesselmann WS, Micke O, et al. (2002) A long-term follow-up study after retro-orbital irradiation for Graves’ ophthalmopathy. Int J Radiât Oncol Biol Phys 52:192–197

    Article  PubMed  Google Scholar 

  29. Seegenschmiedt MH, Keilholz L, Martus P, et al (1997) Prevention of heterotopic ossification about the hip: final results of two randomized trials in 410 patients using either preoperative or postoperative radiation therapy. Int J Radiât Oncol Biol Phys 39:161–171

    Article  PubMed  CAS  Google Scholar 

  30. Shimizu Y, Kato H, Schull WJ (1990) Studies of the mortality of A-bomb survivors. Mortality, 1950–1985: Part 2. Cancer mortality based on the recently revised doses (DS86). Radiât Res 121:120–141

    Article  PubMed  CAS  Google Scholar 

  31. Snijders-Keilholz A, de Keizer RJW, Goslings BM, et al (1996) Probable risk of tumour induction after retro-orbital irradiation for Graves’ ophthalmopathy. Radiother Oncol 38:69–71

    Article  PubMed  CAS  Google Scholar 

  32. Snyder WS, Ford MR, Warner GG, et al (1969) Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. MIRD pamphlet no. 5. J Nucl Med (Suppl) 10:3

    Google Scholar 

  33. Trott KR, Kamprad F (2004) Side effects and long-term risks from radiotherapy of benign diseases. This volume, Chapter 2

    Google Scholar 

  34. Ullrich RL, Preston RJ (1987) Myeloid leukemia in male RFM mice following irradiation with fission spectrum neutrons or gamma rays. Radiât Res 109:165–170

    Article  PubMed  CAS  Google Scholar 

  35. UNSCEAR (1988) Sources, effects and risks of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations, New York, NY

    Google Scholar 

  36. UNSCEAR (1993) Sources, effects and risks of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations, New York, NY

    Google Scholar 

  37. Wagner UC, Eifel PJ and Geise RA (1994) Potential biological effects following high X-ray dose interventional procedures. J Vase Interv Radiol 5:71–84

    Article  CAS  Google Scholar 

  38. Wittkampf FHM, Wever EF, Vos K, et al (2000) Reduction of radiation exposure in the cardiac electrophysiology laboratory pacing. Clin Electrophysiol 23:1638–1644

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Broerse, J.J., Jansen, J.T.M., Zoetelief, J. (2008). Risk Assessment and Carcinogenesis Modelling. In: Seegenschmiedt, M.H., Makoski, HB., Trott, KR., Brady, L.W. (eds) Radiotherapy for Non-Malignant Disorders. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68943-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68943-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62550-6

  • Online ISBN: 978-3-540-68943-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics