Skip to main content

The Diamant Approach for an Efficient Automatic Differentiation of the Asymptotic Numerical Method

  • Conference paper
Advances in Automatic Differentiation

Summary

Based on high-order Taylor expansions, the asymptotic numerical method (ANM) is devoted to the solution of nonlinear partial differential equation (PDE) problems arising, for instance, in mechanics. Up to now, series were mainly handwritten and hand-coded. The note discusses the automation of the specific derivative computations involved in the ANM and presents the automatic differentiation (AD) approach Diamant. As any AD tool, Diamant is generic and may be used to differentiate the code of any differentiable behaviour law. Numerical performances, measured while solving a mechanical PDE problem, prove the efficiency of the Diamant approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arquier, R.: http://www.lma.cnrs-mrs.fr/manlab (2005). Manlab : logiciel de continuation interactif (manuel utilisateur)

  2. Bell, E.: Exponential polynomials. Ann. of Math. 35, 258–277 (1934)

    Article  MathSciNet  Google Scholar 

  3. Berz, M., Makino, K., Shamseddine, K., Hoffstätter, G.H., Wan, W.: COSY INFINITY and its applications in nonlinear dynamics. In: M. Berz, C. Bischof, G. Corliss, A. Griewank (eds.) Computational Differentiation: Techniques, Applications, and Tools, pp. 363–365. SIAM, Philadelphia, PA (1996)

    Google Scholar 

  4. Chang, Y., Corliss, G.F.: Solving ordinary differential equations using Taylor series. ACM Trans. Math. Software 8, 114–144 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chang, Y.F., Corliss, G.F.: ATOMFT: Solving ODEs and DAEs using Taylor series. Computers & Mathematics with Applications 28, 209–233 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Charpentier, I., Dal Cappello, C., Utke, J.: Efficient higher-order derivatives of the hypergeometric function. In: C. Bischof, M. Bücker, P. Hovland, U. Naumann, J. Utke (eds.) Advances in Automatic Differentiation, Lecture Notes in Computational Science and Engineering, pp. 111–120. Springer, Berlin. This volume.

    Google Scholar 

  7. Charpentier, I., Potier-Ferry, M.: Différentiation automatique de la Méthode asymptotique numérique Typée: l’approche Diamant. Comptes Rendus Mécanique 336, 336–340 (2008). DOI doi:10.1016/j.crme.2007.11.022

    Article  Google Scholar 

  8. Charpentier, I., Utke, J.: Rapsodia code generator for fast higher order derivative tensors. Preprint, Argonne National Laboratory (2007). Under review at OMS; also available as preprint ANL/MCS-P1463-1107

    Google Scholar 

  9. Cochelin, B., Damil, N., Potier-Ferry, M.: Méthode Asymptotique Numérique. Hermes Science Publications (2007)

    Google Scholar 

  10. Griewank, A.: Evaluating Derivatives. Principles and Techniques of Algorithmic Differentiation. No. 19 in Frontiers in Applied Mathematics. SIAM, Philadelphia (2000)

    Google Scholar 

  11. Griewank, A., Juedes, D., Utke, J.: ADOL–C, a package for the automatic differentiation of algorithms written in C/C++. ACM Trans. Math. Software 22(2), 131–167 (1996)

    Article  MATH  Google Scholar 

  12. Guillaume, P., Masmoudi, M.: Computation of high order derivatives in optimal shape design. Numerische Mathematik 67, 231–250 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lahman, H., Cadou, J., Zahrouni, H., Damil, N., Potier-Ferry, M.: High-order predictor-corrector algorithms. Int. J. Numer. Meth. Eng. 55, 685–704 (2002)

    Article  Google Scholar 

  14. Pryce, J., Reid, J.: AD01, a Fortran 90 code for automatic differentiation. Tech. Rep. RAL-TR-1998-057, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England (1998)

    Google Scholar 

  15. Thompson, J., Walker, A.: The nonlinear perturbation analysis of discrete structural systems. Int. J. Solids & Structures 4, 757–768 (1968)

    Article  MATH  Google Scholar 

  16. Zahrouni, H., Cochelin, B., Potier-Ferry, M.: Computing finite rotations of shells by an asymptotic-numerical. Compt. methods Appl. Engrg 175, 71–85 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Charpentier, I., Lejeune, A., Potier-Ferry, M. (2008). The Diamant Approach for an Efficient Automatic Differentiation of the Asymptotic Numerical Method. In: Bischof, C.H., Bücker, H.M., Hovland, P., Naumann, U., Utke, J. (eds) Advances in Automatic Differentiation. Lecture Notes in Computational Science and Engineering, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68942-3_13

Download citation

Publish with us

Policies and ethics