Skip to main content

Ethanol Production from Maize

  • Chapter

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 63))

The production of fuel ethanol from corn grain is widely carried out in the US, with total current production at 7 billion gallons. This may soon reach 10 billion gallons or more. This chapter addresses the potential of fuel ethanol as an additional source of product based on utilization of the cellulosic (non-food) portions of maize, and in particular the pericarp, cobs, stalks and leaves of the corn plant. An analysis of the composition of corn, and possible processing schemes that transform the cellulosic portions to ethanol are addressed. Technologies for the bioprocessing of cellulose to ethanol, as well as the impact of cellulose utilization on supplementing corn ethanol, are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Belyea RL, Rausch KD, Tumbleson ME (2004) Composition of corn and distillers dried grains with solubles from dry grind ethanol processing. Bioresource Technol 94(3):293–298

    Article  CAS  Google Scholar 

  • Blanco H, Lal R (2007) Soil and crop response to harvesting corn residues for biofuel production. Geoderma 141(3–4):355–362

    Google Scholar 

  • Burchhardt G, Ingram LO (1992) Conversion of xylan to ethanol by ethanologenic strains ofEs-cherichia coli and Klebsiella oxytoca. Appl Environ Microbiol 58:1128–1133

    PubMed  CAS  Google Scholar 

  • Dock C, Hess M, Antranikian G (2008) A thermoactive glucoamylase with biotechnological relevance from the thermoacidophilic EuryarchaeonThermoplasma acidophilum. Appl Microbiol Biotechnol 78:105–114

    Article  PubMed  CAS  Google Scholar 

  • Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresource Technol 96(18):2019–2025

    Article  CAS  Google Scholar 

  • Energy Information Administration (2007) US fuel ethanol oxygenate production. US Department of Energy, Washington, DC

    Google Scholar 

  • Galbe M, Zacchi G (2002) A review of the production of ethanol from softwod. Appl Microbiol Biotechnol 59:618–628

    Article  PubMed  CAS  Google Scholar 

  • Graboski MS (2002) Fossil energy use in the manufacture of corn ethanol. Colorado School of Mines. Prepared for the National Corn Growers Association, Chesterfield

    Google Scholar 

  • Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:1–6

    Article  Google Scholar 

  • Gulati M, Kohlmann K, Ladisch MR, Hespell R, Bothast RJ (1996) Assessment of ethanol production options for corn products. Bioresource Technol 58(3):253–264

    Article  CAS  Google Scholar 

  • Hahn-Haegerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G (2006) Bioethanol — the fuel of tomorrow from the residues of today. Trends Biotechnol 24(12):549–556

    Article  CAS  Google Scholar 

  • Hazell BW, Te'o VSJ, Bradner JR, Bergquist PL, Nevalainen KMH (2000) Rapid transformation of high cellulase-producing mutant strains ofTrichoderma reeseiby microprojectile bombardment. Lett Appl Microbiol 30:282–286

    Article  PubMed  CAS  Google Scholar 

  • Ho N, Chen Z, Brainard A, Sedlak M (2000) Genetically engineeredSaccharomycesyeasts for conversion of cellulosic biomass to environmentally friendly transportation fuel ethanol. American Chemical Society Symposium Series, Washington, DC

    Google Scholar 

  • Hoskinson RL, Karlen DL, Birrell SJ, Radtke CW, Wilhelm WW (2007) Engineering, nutrient removal, and feedstock conversion evaluations of four corn stover harvest scenarios. Biomass Bioenergy 31(2–3):126–136

    Article  CAS  Google Scholar 

  • Ingram LO, Conway T, Clark DP, Sewell GM, Preston JF (1987) Genetic engineering of ethanol production inEscherichia coli. Appl Environ Microbiol 53:2420–2425

    PubMed  CAS  Google Scholar 

  • Kim S, Dale BE (2005) Life cycle assessment of various cropping systems utilized for producing biofuels: bioethanol and biodiesel. Biomass Bioenergy 29(6):426–439

    Article  Google Scholar 

  • Kim Y, Hendrickson R, Mosier N, Bals B, Balan V, Dale B, Ladisch M (2008a) Enzyme hydrolysis and ethanol fermentation of liquid hot water and AFEX pretreated distillers' grains at high solids loadings. Bioresource Technol 99(12):5206–5215

    Article  CAS  Google Scholar 

  • Kim Y, Mosier N, Hendrickson R, Brewer M, Ho NWY, Sedlak M, Dreshel R, Welch G, Dien BS, Aden A, et al. (2008b) Composition of corn dry-grind ethanol by-products: DDGS, wet cake, and thin stillage. Bioresource Technol 99(12):5165–5176

    Article  CAS  Google Scholar 

  • Kim Y, Mosier N, Ladisch M (2008c) Process simulation of modified dry grind ethanol plant with recycle of pretreated and enzymatically hydrolyzed distiller's grains. Bioresource Technol 99(12):5177–5192

    Article  CAS  Google Scholar 

  • Ladisch MR, Voloch M, Hong J, Bienkowski P, Tsao GT (1984) Cornmeal adsorber for dehydrating ethanol vapors. Ind Eng Chem Proc Des Dev 23(3):437–443

    Article  CAS  Google Scholar 

  • Li X-L, Skory CD, Ximenes EA, Jordan DB, Dien BE, Hughes SR, Cotta MA (2007) Expression of an AT-rich xylanase gene from the anaerobic fungusOrpinomycessp. strain PC-2 in and secretion of the heterologous enzyme byHypocrea jecorina. Appl Biochem Biotechnol 74(6):1264–1275

    CAS  Google Scholar 

  • Mann L, Tolbert V, Cushman J (2002) Potential environment effects of corn (Zea maysL.) stover removal with emphasis on soil organic matter and erosion. Agric Ecosyst Environ 89(3):149–166

    Article  Google Scholar 

  • Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. Adv Biochem Engin Biotechnol 108:95–120

    CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, Ladisch M (2005a) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol 96:673–686

    Article  CAS  Google Scholar 

  • Mosier NS, Hendrickson R, Brewer M, Ho N, Sedlak M, Dreshel R, Welch G, Dien BS, Aden A, Ladisch MR (2005b) Industrial scale-up of pH-controlled liquid hot water pretreatment of corn fiber for fuel ethanol production. Appl Biochem Biotechnol 125(2):77–97

    Article  CAS  Google Scholar 

  • Pandey A (1995) Glucoamylase research — an overview. Starch 47:439–445

    Article  CAS  Google Scholar 

  • Pordesimo LO, Hames BR, Sokhansanj S, Edens WC (2005) Variation in corn stover composition and energy content with crop maturity. Biomass Bioenergy 28(4):366–374

    Article  CAS  Google Scholar 

  • Potera C (2006) Progress with biofuels depends on drive microbiology research. Microbe 1:317–322

    Google Scholar 

  • Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermopiles and thermostable enzymes in biorefining. Microb Cell Factories 6(9):1–23

    Google Scholar 

  • USDA (2006) Agricultural statistics. Table 1–36.http://www.nass.usda.gov/publications/ag statistics/index.aspAccessed 14 December 2007

  • USDA National Agricultural Statistics Service (2005) Quick stats, Iowa county data — crops.http://www.nass.usda.govAccessed 18 December 2007

  • US DOE (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. US Department of Energy, Office of Science and Office of Energy Efficiency and Renewable Energy, Washington, DC

    Google Scholar 

  • US DOE (2007) Biomass feedstock composition and property database. US Department of Energy, Office of Science and Office of Energy Efficiency and Renewable Energy, Washington, DC. http://www1.eere.energy.gov/biomass/feedstock databases.html. Accessed 13 December 2007

    Google Scholar 

  • Van der Veen ME, Veelaert S, Van der Goot AJ, Boom RM (2006) Starch hydrolysis under low water conditions: a conceptual design. J Food Eng 75:178–186

    Article  Google Scholar 

  • Wyman CE (1994) Ethanol from lignocellulosic biomass: technology, economics, and opportunities. Bioresource Technol 50(1):3–15

    Article  CAS  Google Scholar 

  • Wyman CE (1999) Biomass ethanol: technical progress, opportunities, and commercial challenges. Annu Rev Energy Environ 24:189–226

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ladisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, B.V

About this chapter

Cite this chapter

Schwietzke, S., Kim, Y., Ximenes, E., Mosier, N., Ladisch, M. (2009). Ethanol Production from Maize. In: Kriz, A.L., Larkins, B.A. (eds) Molecular Genetic Approaches to Maize Improvement. Biotechnology in Agriculture and Forestry, vol 63. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68922-5_23

Download citation

Publish with us

Policies and ethics