Advertisement

Ethanol Production from Maize

  • Stefan Schwietzke
  • Youngmi Kim
  • Eduardo Ximenes
  • Nathan Mosier
  • Michael LadischEmail author
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 63)

The production of fuel ethanol from corn grain is widely carried out in the US, with total current production at 7 billion gallons. This may soon reach 10 billion gallons or more. This chapter addresses the potential of fuel ethanol as an additional source of product based on utilization of the cellulosic (non-food) portions of maize, and in particular the pericarp, cobs, stalks and leaves of the corn plant. An analysis of the composition of corn, and possible processing schemes that transform the cellulosic portions to ethanol are addressed. Technologies for the bioprocessing of cellulose to ethanol, as well as the impact of cellulose utilization on supplementing corn ethanol, are presented.

Keywords

Ethanol Production Corn Stover Ethanol Yield Fuel Ethanol Ethanol Conversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belyea RL, Rausch KD, Tumbleson ME (2004) Composition of corn and distillers dried grains with solubles from dry grind ethanol processing. Bioresource Technol 94(3):293–298CrossRefGoogle Scholar
  2. Blanco H, Lal R (2007) Soil and crop response to harvesting corn residues for biofuel production. Geoderma 141(3–4):355–362Google Scholar
  3. Burchhardt G, Ingram LO (1992) Conversion of xylan to ethanol by ethanologenic strains ofEs-cherichia coli and Klebsiella oxytoca. Appl Environ Microbiol 58:1128–1133PubMedGoogle Scholar
  4. Dock C, Hess M, Antranikian G (2008) A thermoactive glucoamylase with biotechnological relevance from the thermoacidophilic EuryarchaeonThermoplasma acidophilum. Appl Microbiol Biotechnol 78:105–114PubMedCrossRefGoogle Scholar
  5. Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresource Technol 96(18):2019–2025CrossRefGoogle Scholar
  6. Energy Information Administration (2007) US fuel ethanol oxygenate production. US Department of Energy, Washington, DCGoogle Scholar
  7. Galbe M, Zacchi G (2002) A review of the production of ethanol from softwod. Appl Microbiol Biotechnol 59:618–628PubMedCrossRefGoogle Scholar
  8. Graboski MS (2002) Fossil energy use in the manufacture of corn ethanol. Colorado School of Mines. Prepared for the National Corn Growers Association, ChesterfieldGoogle Scholar
  9. Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:1–6CrossRefGoogle Scholar
  10. Gulati M, Kohlmann K, Ladisch MR, Hespell R, Bothast RJ (1996) Assessment of ethanol production options for corn products. Bioresource Technol 58(3):253–264CrossRefGoogle Scholar
  11. Hahn-Haegerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G (2006) Bioethanol — the fuel of tomorrow from the residues of today. Trends Biotechnol 24(12):549–556CrossRefGoogle Scholar
  12. Hazell BW, Te'o VSJ, Bradner JR, Bergquist PL, Nevalainen KMH (2000) Rapid transformation of high cellulase-producing mutant strains ofTrichoderma reeseiby microprojectile bombardment. Lett Appl Microbiol 30:282–286PubMedCrossRefGoogle Scholar
  13. Ho N, Chen Z, Brainard A, Sedlak M (2000) Genetically engineeredSaccharomycesyeasts for conversion of cellulosic biomass to environmentally friendly transportation fuel ethanol. American Chemical Society Symposium Series, Washington, DCGoogle Scholar
  14. Hoskinson RL, Karlen DL, Birrell SJ, Radtke CW, Wilhelm WW (2007) Engineering, nutrient removal, and feedstock conversion evaluations of four corn stover harvest scenarios. Biomass Bioenergy 31(2–3):126–136CrossRefGoogle Scholar
  15. Ingram LO, Conway T, Clark DP, Sewell GM, Preston JF (1987) Genetic engineering of ethanol production inEscherichia coli. Appl Environ Microbiol 53:2420–2425PubMedGoogle Scholar
  16. Kim S, Dale BE (2005) Life cycle assessment of various cropping systems utilized for producing biofuels: bioethanol and biodiesel. Biomass Bioenergy 29(6):426–439CrossRefGoogle Scholar
  17. Kim Y, Hendrickson R, Mosier N, Bals B, Balan V, Dale B, Ladisch M (2008a) Enzyme hydrolysis and ethanol fermentation of liquid hot water and AFEX pretreated distillers' grains at high solids loadings. Bioresource Technol 99(12):5206–5215CrossRefGoogle Scholar
  18. Kim Y, Mosier N, Hendrickson R, Brewer M, Ho NWY, Sedlak M, Dreshel R, Welch G, Dien BS, Aden A, et al. (2008b) Composition of corn dry-grind ethanol by-products: DDGS, wet cake, and thin stillage. Bioresource Technol 99(12):5165–5176CrossRefGoogle Scholar
  19. Kim Y, Mosier N, Ladisch M (2008c) Process simulation of modified dry grind ethanol plant with recycle of pretreated and enzymatically hydrolyzed distiller's grains. Bioresource Technol 99(12):5177–5192CrossRefGoogle Scholar
  20. Ladisch MR, Voloch M, Hong J, Bienkowski P, Tsao GT (1984) Cornmeal adsorber for dehydrating ethanol vapors. Ind Eng Chem Proc Des Dev 23(3):437–443CrossRefGoogle Scholar
  21. Li X-L, Skory CD, Ximenes EA, Jordan DB, Dien BE, Hughes SR, Cotta MA (2007) Expression of an AT-rich xylanase gene from the anaerobic fungusOrpinomycessp. strain PC-2 in and secretion of the heterologous enzyme byHypocrea jecorina. Appl Biochem Biotechnol 74(6):1264–1275Google Scholar
  22. Mann L, Tolbert V, Cushman J (2002) Potential environment effects of corn (Zea maysL.) stover removal with emphasis on soil organic matter and erosion. Agric Ecosyst Environ 89(3):149–166CrossRefGoogle Scholar
  23. Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. Adv Biochem Engin Biotechnol 108:95–120Google Scholar
  24. Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, Ladisch M (2005a) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol 96:673–686CrossRefGoogle Scholar
  25. Mosier NS, Hendrickson R, Brewer M, Ho N, Sedlak M, Dreshel R, Welch G, Dien BS, Aden A, Ladisch MR (2005b) Industrial scale-up of pH-controlled liquid hot water pretreatment of corn fiber for fuel ethanol production. Appl Biochem Biotechnol 125(2):77–97CrossRefGoogle Scholar
  26. Pandey A (1995) Glucoamylase research — an overview. Starch 47:439–445CrossRefGoogle Scholar
  27. Pordesimo LO, Hames BR, Sokhansanj S, Edens WC (2005) Variation in corn stover composition and energy content with crop maturity. Biomass Bioenergy 28(4):366–374CrossRefGoogle Scholar
  28. Potera C (2006) Progress with biofuels depends on drive microbiology research. Microbe 1:317–322Google Scholar
  29. Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermopiles and thermostable enzymes in biorefining. Microb Cell Factories 6(9):1–23Google Scholar
  30. USDA (2006) Agricultural statistics. Table 1–36.http://www.nass.usda.gov/publications/ag statistics/index.aspAccessed 14 December 2007
  31. USDA National Agricultural Statistics Service (2005) Quick stats, Iowa county data — crops.http://www.nass.usda.govAccessed 18 December 2007
  32. US DOE (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. US Department of Energy, Office of Science and Office of Energy Efficiency and Renewable Energy, Washington, DCGoogle Scholar
  33. US DOE (2007) Biomass feedstock composition and property database. US Department of Energy, Office of Science and Office of Energy Efficiency and Renewable Energy, Washington, DC. http://www1.eere.energy.gov/biomass/feedstock databases.html. Accessed 13 December 2007Google Scholar
  34. Van der Veen ME, Veelaert S, Van der Goot AJ, Boom RM (2006) Starch hydrolysis under low water conditions: a conceptual design. J Food Eng 75:178–186CrossRefGoogle Scholar
  35. Wyman CE (1994) Ethanol from lignocellulosic biomass: technology, economics, and opportunities. Bioresource Technol 50(1):3–15CrossRefGoogle Scholar
  36. Wyman CE (1999) Biomass ethanol: technical progress, opportunities, and commercial challenges. Annu Rev Energy Environ 24:189–226CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V 2009

Authors and Affiliations

  • Stefan Schwietzke
    • 1
  • Youngmi Kim
    • 2
  • Eduardo Ximenes
    • 2
  • Nathan Mosier
    • 1
    • 2
  • Michael Ladisch
    • 1
    • 2
    • 3
    Email author
  1. 1.Laboratory of Renewable Resources EngineeringPurdue University, Potter Engineering CenterWest LafayetteUSA
  2. 2.Department of Agricultural and Biological EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations