• Delene J. OldenburgEmail author
  • Arnold J. Bendich
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 63)

The introduction of a transgene to alter the properties of the chloroplast raises the question of whether the transgene should be integrated into the nuclear or plastid genome (Daniell et al. 2004; Grevich and Daniell 2005; Maliga 2002, 2004). For the nucleus, we need to consider a plastid targeting sequence, gene silencing, and cell- and development-specific expression. For both locations, regulation of gene expression is a concern, but different mechanisms predominate in each location. Transcriptional regulation is the most important issue to address in the nucleus, whereas post-transcriptional regulation is primary in the plastid. Success in this endeavor may be further affected by the presence of multiple copies of the genome per plastid and multiple plastids per cell.

Another consideration is the structure of the plastid chromosome (Bendich 2004). Since we require that the transgene be present in all cells derived from the cell containing the initial transformed plastid, it is important to target a plastid DNA molecule capable of acting as a chromosome, a segregating genetic unit. Thus, we need to know what a plastid chromosome looks like and where in the plant to find such a chromosome. The concept of the circular chloroplast chromosome has impeded progress toward an understanding of the process by which chloroplast (cp) DNA is replicated and inherited. The “ploidy paradox” illustrates the problem: there is a small number of segregating genetic units, but a high level of ploidy (computed as the mass of DNA per plastid divided by its genome size) (Birky 1994; Gillham 1994). If the chromosome were comprised of a multigenomic structure of replicating cpDNA, this paradox would be resolved. Furthermore, we could then aim our transgene at cells containing bona fide plastid chromosomes and avoid cells no longer containing cpDNA able to serve as a plastid chromosome.


Chloroplast Genome Plastid Genome Bundle Sheath Bundle Sheath Cell Plastid Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Abed D, Rudrabhatla S, Talla R, Goldman S (2006) Split-seed: a new tool for maize researchers. Planta 223:1355–1360PubMedCrossRefGoogle Scholar
  2. Backert S, Dörfel P, Börner T (1995) Investigation of plant organellar DNAs by pulsed-field gel electrophoresis. Curr Genet 28:390–399PubMedCrossRefGoogle Scholar
  3. Barkan A, Goldschmidt-Clermont M (2000) Participation of nuclear genes in chloroplast gene expression. Biochimie 82:559–572PubMedCrossRefGoogle Scholar
  4. Bedbrook JR, Bogorad L (1976) Endonuclease recognition sites mapped on Zea mayschloroplast DNA. Proc Natl Acad Sci USA 73:4309–4313PubMedCrossRefGoogle Scholar
  5. Bendich AJ (1991) Moving pictures of DNA released upon lysis from bacteria, chloroplasts, and mitochondria. Protoplasma 160:121–130CrossRefGoogle Scholar
  6. Bendich AJ (1993) Reaching for the ring: the study of mitochondrial genome structure. Curr Genet 24:279–290PubMedCrossRefGoogle Scholar
  7. Bendich AJ (2004) Circular chloroplast chromosomes: the grand illusion. Plant Cell 16:1661–1666PubMedCrossRefGoogle Scholar
  8. Bendich AJ, Smith SB (1990) Moving pictures and pulsed-field gel electrophoresis show linear DNA molecules from chloroplasts and mitochondria. Curr Genet 17:421–425CrossRefGoogle Scholar
  9. Birky CW Jr (1994) Relaxed and stringent genomes: why cytoplasmic genes don't obey Mendel's laws. J Hered 85:355–365Google Scholar
  10. Cahoon AB, Harris FM, Stern DB (2004) Analysis of developing maize plastids reveals two mRNA stability classes correlating with RNA polymerase type. EMBO 5:801–806CrossRefGoogle Scholar
  11. Chiu WL, Sears BB (1993) Plastome—genome interactions affect plastid transmission in Oenothera. Genetics 133:989–997PubMedGoogle Scholar
  12. Daniell H (2007) Transgene containment by maternal inheritance: effective or elusive? Proc Natl Acad Sci USA 104:6879–6880PubMedCrossRefGoogle Scholar
  13. Daniell H, Chase C (eds) (2004) Molecular biology and biotechnology of plant organelles: chloro- plasts and mitochondria. Springer, DordrechtGoogle Scholar
  14. Daniell H, Cohill PR, Kumar S, Dufourmantel N (2004) Chloroplast genetic engineering. In: Daniell H, Chase C (eds) Molecular biology and biotechnology of plant organelles: chloroplasts and mitochondria. Springer, Dordrecht, pp 443–490CrossRefGoogle Scholar
  15. Darie CC, De Pascalis L, Mutschler B, Haehnel W (2006) Studies of the Ndh complex and photo—system II from mesophyll and bundle sheath chloroplasts of the C4-type plant Zea mays. J Plant Physiol 163:800–808PubMedCrossRefGoogle Scholar
  16. Deng X-W, Wing RA, Gruissem W (1989) The chloroplast genome exists in multimeric forms. Proc Natl Acad Sci USA 86:4156–4160PubMedCrossRefGoogle Scholar
  17. Gillham NW (ed) (1994) Organelle genes and genomes. Oxford University Press, New YorkGoogle Scholar
  18. Gold B, Carrillo N, Tewari K, Bogorad L (1987) Nucleotide sequence of a preferred maize chloroplast genome template for in vitro DNA synthesis. Proc Natl Acad Sci USA 84: 194–198PubMedCrossRefGoogle Scholar
  19. Grevich JJ, Daniell H (2005) Chloroplast genetic engineering: recent advances and future perspectives. Crit Rev Plant Sci 24:83–107CrossRefGoogle Scholar
  20. Hahnen S, Joeris T, Kreuzaler F, Peterhansel C (2003) Quantification of photosynthetic gene expression in maize C(3) and C(4) tissues by real-time PCR. Photosynth Res 75: 183–192PubMedCrossRefGoogle Scholar
  21. Heinhorst S, Cannon GC (1993) DNA replication in chloroplasts. J Cell Sci 104:1–9Google Scholar
  22. Huang XQ, Wei ZM (2004) High-frequency plant regeneration through callus initiation from mature embryos of maize (Zea mays L.). Plant Cell Rep 22:793–800PubMedCrossRefGoogle Scholar
  23. Kim M, Christopher DA, Mullet JE (1993) Direct evidence for selective modulation of psbA, rpoA, rbcL, and 16S RNA stability during barley chloroplast development. Plant Mol Biol 22: 447–463PubMedCrossRefGoogle Scholar
  24. Kolodner R, Tewari KK (1972) Molecular size and conformation of chloroplast deoxyribonucleic acid from pea leaves. J Biol Chem 247:6355–6364PubMedGoogle Scholar
  25. Kolodner R, Tewari KK (1975a) The molecular size and conformation of the chloroplast DNA from higher plants. Biochim Biophys Acta 402:372–390Google Scholar
  26. Kolodner RD, Tewari KK (1975b) Chloroplast DNA from higher plants replicates by both the Cairns and the rolling circle mechanism. Nature 256:708–711CrossRefGoogle Scholar
  27. Kornberg A, Baker TA (1992) DNA replication. W.H. Freeman, New YorkGoogle Scholar
  28. Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, Lim J, Mittler R, Chory J (2007) Signals from chloroplasts converge to regulate nuclear gene expression. Science 316:715–719PubMedCrossRefGoogle Scholar
  29. Kunnimalaiyaan M, Nielsen BL (1997) Chloroplast DNA replication: mechanism, enzymes and replication origins. J Plant Biochem Biotechnol 6:1–7Google Scholar
  30. Kuzminov A, Stahl FW (1999) Double-strand end repair via the RecBC pathway in Escherichia coli primes DNA replication. Genes Dev 13:345–356PubMedCrossRefGoogle Scholar
  31. Lee SM, Kang K, Chung H, Yoo SH, Xu XM, Lee SB, Cheong JJ, Daniell H, Kim M (2006) Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Mol Cells 21:401–410PubMedGoogle Scholar
  32. Lehman IR, Boehmer PE (1999) Replication of herpes simplex virus DNA. J Biol Chem 274:28059–28062PubMedCrossRefGoogle Scholar
  33. Lilly JW, Havey MJ, Jackson SA, Jiang J (2001) Cytogenomic analyses reveal the structural plasticity of the chloroplast genome in higher plants. Plant Cell 13:245–254PubMedCrossRefGoogle Scholar
  34. Lindbeck AGC, Rose RJ, Lawrence ME, Possingham JV (1989) The chloroplast nucleoids of the bundle sheath and mesophyll cells ofZea mays. Physiol Plant 75:7–12CrossRefGoogle Scholar
  35. Lopez-Juez E, Pyke KA (2005) Plastids unleashed: their development and their integration in plant development. Int J Dev Biol 49:557–577PubMedCrossRefGoogle Scholar
  36. Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Le Ret M, Martin-Magniette ML, Mireau H, Peeters N, Renou JP, Szurek B, Taconnat L, Small I (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16:2089–2103PubMedCrossRefGoogle Scholar
  37. Maier RM, Neckermann K, Igloi GL, Kossel H (1995) Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251:614–628PubMedCrossRefGoogle Scholar
  38. Majeran W, Cai Y, Sun Q, van Wijk KJ (2005) Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell 17: 3111–3140PubMedCrossRefGoogle Scholar
  39. Maliga P (2002) Engineering the plastid genome of higher plants. Curr Opin Plant Biol 5: 164–172PubMedCrossRefGoogle Scholar
  40. Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313PubMedCrossRefGoogle Scholar
  41. Matsuoka Y, Yamazaki Y, Ogihara Y, Tsunewaki K (2002) Whole chloroplast genome comparison of rice, maize, and wheat: implications for chloroplast gene diversification and phylogeny of cereals. Mol Biol Evol 19:2084–2091PubMedGoogle Scholar
  42. McCormac DJ, Barkan A (1999) A nuclear gene in maize required for the translation of the chloroplasts atpB/E mRNA. Plant Cell 11:1709–1716PubMedCrossRefGoogle Scholar
  43. Nott A, Jung HS, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57:739–759PubMedCrossRefGoogle Scholar
  44. Oldenburg DJ, Bendich AJ (2001) Mitochondrial DNA from the liverwort Marchantia polymor- pha: circularly permuted linear molecules, head-to-tail concatemers, and a 5′ protein. J Mol Biol 310:549–562PubMedCrossRefGoogle Scholar
  45. Oldenburg DJ, Bendich AJ (2004a) Most chloroplast DNA of maize seedlings in linear molecules with defined ends and branched forms. J Mol Biol 335:953–970CrossRefGoogle Scholar
  46. Oldenburg DJ, Bendich AJ (2004b) Changes in the structure of DNA molecules and the amount of DNA per plastid during chloroplast development in maize. J Mol Biol 344:1311–1330CrossRefGoogle Scholar
  47. Oldenburg DJ, Rowan BA, Zhao L, Walcher CL, Schleh M, Bendich AJ (2006) Loss or retention of chloroplast DNA in maize seedlings is affected by both light and genotype. Planta 225: 41–55PubMedCrossRefGoogle Scholar
  48. Palmer JD (1983) Chloroplast DNA exists in two orientations. Nature 301:92–93CrossRefGoogle Scholar
  49. Palmer JD (1985) Comparative organization of chloroplast genomes. Annu Rev Genet 19: 325–354PubMedCrossRefGoogle Scholar
  50. Rossini L, Cribb L, Martin DJ, Langdale JA (2001) The maize Golden2 gene defines a novel class of transcriptional regulators in plants. Plant Cell 13:1231–1244PubMedCrossRefGoogle Scholar
  51. Rowan BA, Oldenburg DJ, Bendich AJ (2004) The demise of chloroplast DNA in Arabidopsis. Curr Genet 46:176–181PubMedCrossRefGoogle Scholar
  52. Sandri-Goldin RM (2003) Replication of the herpes simplex virus genome: does it really go around in circles? Proc Natl Acad Sci USA 100:7428–7429PubMedCrossRefGoogle Scholar
  53. ScharffLB, Koop HU (2006) Linear molecules of tobacco ptDNA end at known replication origins and additional loci. Plant Mol Biol 62:611–621CrossRefGoogle Scholar
  54. Scharff LB, Koop HU (2007) Targeted inactivation of the tobacco plastome origins of replication A and B. Plant J 50(5):782–794PubMedCrossRefGoogle Scholar
  55. Schmitz-Linneweber C, Williams-Carrier R, Barkan A (2005) RNA immunoprecipitation and mi- croarray analysis show a chloroplast pentatricopeptide repeat protein to be associated with the 5′ region of mRNAs whose translation it activates. Plant Cell 17:2791–2804PubMedCrossRefGoogle Scholar
  56. Sears BB, Stoike LL, Chiu W-L (1996) Proliferation of direct repeats near the Oenothera chloroplast DNA origin of replication. Mol Biol Evol 13:850–863PubMedGoogle Scholar
  57. Shaver JM, Oldenburg DJ, Bendich AJ (2006) Changes in chloroplast DNA during development in tobacco, Medicago truncatula, pea, and maize. Planta 224:72–82PubMedCrossRefGoogle Scholar
  58. Shaver JM, Oldenburg DJ, Bendich AJ (2008) The structure of chloroplast DNA molecules and the effects of light on the amount of chloroplast DNA during development in Medicago truncatula. Plant Physiol 146:1064–1074PubMedCrossRefGoogle Scholar
  59. Sheen J (1999) C4 gene expression. Annu Rev Plant Physiol Plant Mol Biol 50:187–217PubMedCrossRefGoogle Scholar
  60. Stern DB, Hanson MR, Barkan A (2004) Genetics and genomics of chloroplast biogenesis: maize as a model system. Trends Plant Sci 9:293–301PubMedCrossRefGoogle Scholar
  61. Sylvester AW, Cande WZ, Freeling M (1990) Division and differentiation during normal and liguleless-1 maize leaf development. Development 110:985–1000PubMedGoogle Scholar
  62. Taylor WC, Barkan A, Martienssen RA (1987) Use of nuclear mutants in the analysis of chloroplast development. Dev Genet 8:305–320PubMedCrossRefGoogle Scholar
  63. Wada M, Shimazaki K, Iino M (eds) (2005) Light sensing in plants. Botanical Society of Japan, Yamada Science Foundation and Springer, TokyoGoogle Scholar
  64. Williams PM, Barkan A (2003) A chloroplast-localized PPR protein required for plastid ribosome accumulation. Plant J 36:675–686PubMedCrossRefGoogle Scholar
  65. Yehudai-Resheff S, Zimmer SL, Komine Y, Stern DB (2007) Integration of chloroplast nucleic acid metabolism into the phosphate deprivation response in Chlamydomonas reinhardtii. Plant Cell 19:1023–1038PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V 2009

Authors and Affiliations

  1. 1.Biology DepartmentUniversity of WashingtonSeattleUSA

Personalised recommendations