Skip to main content

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 63))

The introduction of a transgene to alter the properties of the chloroplast raises the question of whether the transgene should be integrated into the nuclear or plastid genome (Daniell et al. 2004; Grevich and Daniell 2005; Maliga 2002, 2004). For the nucleus, we need to consider a plastid targeting sequence, gene silencing, and cell- and development-specific expression. For both locations, regulation of gene expression is a concern, but different mechanisms predominate in each location. Transcriptional regulation is the most important issue to address in the nucleus, whereas post-transcriptional regulation is primary in the plastid. Success in this endeavor may be further affected by the presence of multiple copies of the genome per plastid and multiple plastids per cell.

Another consideration is the structure of the plastid chromosome (Bendich 2004). Since we require that the transgene be present in all cells derived from the cell containing the initial transformed plastid, it is important to target a plastid DNA molecule capable of acting as a chromosome, a segregating genetic unit. Thus, we need to know what a plastid chromosome looks like and where in the plant to find such a chromosome. The concept of the circular chloroplast chromosome has impeded progress toward an understanding of the process by which chloroplast (cp) DNA is replicated and inherited. The “ploidy paradox” illustrates the problem: there is a small number of segregating genetic units, but a high level of ploidy (computed as the mass of DNA per plastid divided by its genome size) (Birky 1994; Gillham 1994). If the chromosome were comprised of a multigenomic structure of replicating cpDNA, this paradox would be resolved. Furthermore, we could then aim our transgene at cells containing bona fide plastid chromosomes and avoid cells no longer containing cpDNA able to serve as a plastid chromosome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Abed D, Rudrabhatla S, Talla R, Goldman S (2006) Split-seed: a new tool for maize researchers. Planta 223:1355–1360

    Article  PubMed  CAS  Google Scholar 

  • Backert S, Dörfel P, Börner T (1995) Investigation of plant organellar DNAs by pulsed-field gel electrophoresis. Curr Genet 28:390–399

    Article  PubMed  CAS  Google Scholar 

  • Barkan A, Goldschmidt-Clermont M (2000) Participation of nuclear genes in chloroplast gene expression. Biochimie 82:559–572

    Article  PubMed  CAS  Google Scholar 

  • Bedbrook JR, Bogorad L (1976) Endonuclease recognition sites mapped on Zea mayschloroplast DNA. Proc Natl Acad Sci USA 73:4309–4313

    Article  PubMed  CAS  Google Scholar 

  • Bendich AJ (1991) Moving pictures of DNA released upon lysis from bacteria, chloroplasts, and mitochondria. Protoplasma 160:121–130

    Article  Google Scholar 

  • Bendich AJ (1993) Reaching for the ring: the study of mitochondrial genome structure. Curr Genet 24:279–290

    Article  PubMed  CAS  Google Scholar 

  • Bendich AJ (2004) Circular chloroplast chromosomes: the grand illusion. Plant Cell 16:1661–1666

    Article  PubMed  CAS  Google Scholar 

  • Bendich AJ, Smith SB (1990) Moving pictures and pulsed-field gel electrophoresis show linear DNA molecules from chloroplasts and mitochondria. Curr Genet 17:421–425

    Article  CAS  Google Scholar 

  • Birky CW Jr (1994) Relaxed and stringent genomes: why cytoplasmic genes don't obey Mendel's laws. J Hered 85:355–365

    Google Scholar 

  • Cahoon AB, Harris FM, Stern DB (2004) Analysis of developing maize plastids reveals two mRNA stability classes correlating with RNA polymerase type. EMBO 5:801–806

    Article  CAS  Google Scholar 

  • Chiu WL, Sears BB (1993) Plastome—genome interactions affect plastid transmission in Oenothera. Genetics 133:989–997

    PubMed  CAS  Google Scholar 

  • Daniell H (2007) Transgene containment by maternal inheritance: effective or elusive? Proc Natl Acad Sci USA 104:6879–6880

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Chase C (eds) (2004) Molecular biology and biotechnology of plant organelles: chloro- plasts and mitochondria. Springer, Dordrecht

    Google Scholar 

  • Daniell H, Cohill PR, Kumar S, Dufourmantel N (2004) Chloroplast genetic engineering. In: Daniell H, Chase C (eds) Molecular biology and biotechnology of plant organelles: chloroplasts and mitochondria. Springer, Dordrecht, pp 443–490

    Chapter  Google Scholar 

  • Darie CC, De Pascalis L, Mutschler B, Haehnel W (2006) Studies of the Ndh complex and photo—system II from mesophyll and bundle sheath chloroplasts of the C4-type plant Zea mays. J Plant Physiol 163:800–808

    Article  PubMed  CAS  Google Scholar 

  • Deng X-W, Wing RA, Gruissem W (1989) The chloroplast genome exists in multimeric forms. Proc Natl Acad Sci USA 86:4156–4160

    Article  PubMed  CAS  Google Scholar 

  • Gillham NW (ed) (1994) Organelle genes and genomes. Oxford University Press, New York

    Google Scholar 

  • Gold B, Carrillo N, Tewari K, Bogorad L (1987) Nucleotide sequence of a preferred maize chloroplast genome template for in vitro DNA synthesis. Proc Natl Acad Sci USA 84: 194–198

    Article  PubMed  CAS  Google Scholar 

  • Grevich JJ, Daniell H (2005) Chloroplast genetic engineering: recent advances and future perspectives. Crit Rev Plant Sci 24:83–107

    Article  CAS  Google Scholar 

  • Hahnen S, Joeris T, Kreuzaler F, Peterhansel C (2003) Quantification of photosynthetic gene expression in maize C(3) and C(4) tissues by real-time PCR. Photosynth Res 75: 183–192

    Article  PubMed  CAS  Google Scholar 

  • Heinhorst S, Cannon GC (1993) DNA replication in chloroplasts. J Cell Sci 104:1–9

    CAS  Google Scholar 

  • Huang XQ, Wei ZM (2004) High-frequency plant regeneration through callus initiation from mature embryos of maize (Zea mays L.). Plant Cell Rep 22:793–800

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Christopher DA, Mullet JE (1993) Direct evidence for selective modulation of psbA, rpoA, rbcL, and 16S RNA stability during barley chloroplast development. Plant Mol Biol 22: 447–463

    Article  PubMed  CAS  Google Scholar 

  • Kolodner R, Tewari KK (1972) Molecular size and conformation of chloroplast deoxyribonucleic acid from pea leaves. J Biol Chem 247:6355–6364

    PubMed  CAS  Google Scholar 

  • Kolodner R, Tewari KK (1975a) The molecular size and conformation of the chloroplast DNA from higher plants. Biochim Biophys Acta 402:372–390

    CAS  Google Scholar 

  • Kolodner RD, Tewari KK (1975b) Chloroplast DNA from higher plants replicates by both the Cairns and the rolling circle mechanism. Nature 256:708–711

    Article  CAS  Google Scholar 

  • Kornberg A, Baker TA (1992) DNA replication. W.H. Freeman, New York

    Google Scholar 

  • Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, Lim J, Mittler R, Chory J (2007) Signals from chloroplasts converge to regulate nuclear gene expression. Science 316:715–719

    Article  PubMed  CAS  Google Scholar 

  • Kunnimalaiyaan M, Nielsen BL (1997) Chloroplast DNA replication: mechanism, enzymes and replication origins. J Plant Biochem Biotechnol 6:1–7

    CAS  Google Scholar 

  • Kuzminov A, Stahl FW (1999) Double-strand end repair via the RecBC pathway in Escherichia coli primes DNA replication. Genes Dev 13:345–356

    Article  PubMed  CAS  Google Scholar 

  • Lee SM, Kang K, Chung H, Yoo SH, Xu XM, Lee SB, Cheong JJ, Daniell H, Kim M (2006) Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Mol Cells 21:401–410

    PubMed  CAS  Google Scholar 

  • Lehman IR, Boehmer PE (1999) Replication of herpes simplex virus DNA. J Biol Chem 274:28059–28062

    Article  PubMed  CAS  Google Scholar 

  • Lilly JW, Havey MJ, Jackson SA, Jiang J (2001) Cytogenomic analyses reveal the structural plasticity of the chloroplast genome in higher plants. Plant Cell 13:245–254

    Article  PubMed  CAS  Google Scholar 

  • Lindbeck AGC, Rose RJ, Lawrence ME, Possingham JV (1989) The chloroplast nucleoids of the bundle sheath and mesophyll cells ofZea mays. Physiol Plant 75:7–12

    Article  Google Scholar 

  • Lopez-Juez E, Pyke KA (2005) Plastids unleashed: their development and their integration in plant development. Int J Dev Biol 49:557–577

    Article  PubMed  CAS  Google Scholar 

  • Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Le Ret M, Martin-Magniette ML, Mireau H, Peeters N, Renou JP, Szurek B, Taconnat L, Small I (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16:2089–2103

    Article  PubMed  CAS  Google Scholar 

  • Maier RM, Neckermann K, Igloi GL, Kossel H (1995) Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251:614–628

    Article  PubMed  CAS  Google Scholar 

  • Majeran W, Cai Y, Sun Q, van Wijk KJ (2005) Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell 17: 3111–3140

    Article  PubMed  CAS  Google Scholar 

  • Maliga P (2002) Engineering the plastid genome of higher plants. Curr Opin Plant Biol 5: 164–172

    Article  PubMed  CAS  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka Y, Yamazaki Y, Ogihara Y, Tsunewaki K (2002) Whole chloroplast genome comparison of rice, maize, and wheat: implications for chloroplast gene diversification and phylogeny of cereals. Mol Biol Evol 19:2084–2091

    PubMed  CAS  Google Scholar 

  • McCormac DJ, Barkan A (1999) A nuclear gene in maize required for the translation of the chloroplasts atpB/E mRNA. Plant Cell 11:1709–1716

    Article  PubMed  CAS  Google Scholar 

  • Nott A, Jung HS, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57:739–759

    Article  PubMed  CAS  Google Scholar 

  • Oldenburg DJ, Bendich AJ (2001) Mitochondrial DNA from the liverwort Marchantia polymor- pha: circularly permuted linear molecules, head-to-tail concatemers, and a 5′ protein. J Mol Biol 310:549–562

    Article  PubMed  CAS  Google Scholar 

  • Oldenburg DJ, Bendich AJ (2004a) Most chloroplast DNA of maize seedlings in linear molecules with defined ends and branched forms. J Mol Biol 335:953–970

    Article  CAS  Google Scholar 

  • Oldenburg DJ, Bendich AJ (2004b) Changes in the structure of DNA molecules and the amount of DNA per plastid during chloroplast development in maize. J Mol Biol 344:1311–1330

    Article  CAS  Google Scholar 

  • Oldenburg DJ, Rowan BA, Zhao L, Walcher CL, Schleh M, Bendich AJ (2006) Loss or retention of chloroplast DNA in maize seedlings is affected by both light and genotype. Planta 225: 41–55

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD (1983) Chloroplast DNA exists in two orientations. Nature 301:92–93

    Article  CAS  Google Scholar 

  • Palmer JD (1985) Comparative organization of chloroplast genomes. Annu Rev Genet 19: 325–354

    Article  PubMed  CAS  Google Scholar 

  • Rossini L, Cribb L, Martin DJ, Langdale JA (2001) The maize Golden2 gene defines a novel class of transcriptional regulators in plants. Plant Cell 13:1231–1244

    Article  PubMed  CAS  Google Scholar 

  • Rowan BA, Oldenburg DJ, Bendich AJ (2004) The demise of chloroplast DNA in Arabidopsis. Curr Genet 46:176–181

    Article  PubMed  CAS  Google Scholar 

  • Sandri-Goldin RM (2003) Replication of the herpes simplex virus genome: does it really go around in circles? Proc Natl Acad Sci USA 100:7428–7429

    Article  PubMed  CAS  Google Scholar 

  • ScharffLB, Koop HU (2006) Linear molecules of tobacco ptDNA end at known replication origins and additional loci. Plant Mol Biol 62:611–621

    Article  Google Scholar 

  • Scharff LB, Koop HU (2007) Targeted inactivation of the tobacco plastome origins of replication A and B. Plant J 50(5):782–794

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber C, Williams-Carrier R, Barkan A (2005) RNA immunoprecipitation and mi- croarray analysis show a chloroplast pentatricopeptide repeat protein to be associated with the 5′ region of mRNAs whose translation it activates. Plant Cell 17:2791–2804

    Article  PubMed  CAS  Google Scholar 

  • Sears BB, Stoike LL, Chiu W-L (1996) Proliferation of direct repeats near the Oenothera chloroplast DNA origin of replication. Mol Biol Evol 13:850–863

    PubMed  CAS  Google Scholar 

  • Shaver JM, Oldenburg DJ, Bendich AJ (2006) Changes in chloroplast DNA during development in tobacco, Medicago truncatula, pea, and maize. Planta 224:72–82

    Article  PubMed  CAS  Google Scholar 

  • Shaver JM, Oldenburg DJ, Bendich AJ (2008) The structure of chloroplast DNA molecules and the effects of light on the amount of chloroplast DNA during development in Medicago truncatula. Plant Physiol 146:1064–1074

    Article  PubMed  CAS  Google Scholar 

  • Sheen J (1999) C4 gene expression. Annu Rev Plant Physiol Plant Mol Biol 50:187–217

    Article  PubMed  CAS  Google Scholar 

  • Stern DB, Hanson MR, Barkan A (2004) Genetics and genomics of chloroplast biogenesis: maize as a model system. Trends Plant Sci 9:293–301

    Article  PubMed  CAS  Google Scholar 

  • Sylvester AW, Cande WZ, Freeling M (1990) Division and differentiation during normal and liguleless-1 maize leaf development. Development 110:985–1000

    PubMed  CAS  Google Scholar 

  • Taylor WC, Barkan A, Martienssen RA (1987) Use of nuclear mutants in the analysis of chloroplast development. Dev Genet 8:305–320

    Article  PubMed  CAS  Google Scholar 

  • Wada M, Shimazaki K, Iino M (eds) (2005) Light sensing in plants. Botanical Society of Japan, Yamada Science Foundation and Springer, Tokyo

    Google Scholar 

  • Williams PM, Barkan A (2003) A chloroplast-localized PPR protein required for plastid ribosome accumulation. Plant J 36:675–686

    Article  PubMed  CAS  Google Scholar 

  • Yehudai-Resheff S, Zimmer SL, Komine Y, Stern DB (2007) Integration of chloroplast nucleic acid metabolism into the phosphate deprivation response in Chlamydomonas reinhardtii. Plant Cell 19:1023–1038

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delene J. Oldenburg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, B.V

About this chapter

Cite this chapter

Oldenburg, D.J., Bendich, A.J. (2009). Chloroplasts. In: Kriz, A.L., Larkins, B.A. (eds) Molecular Genetic Approaches to Maize Improvement. Biotechnology in Agriculture and Forestry, vol 63. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68922-5_22

Download citation

Publish with us

Policies and ethics