Skip to main content

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 63))

Maize oil is valued as a component of animal feed and as food. Approximately half of maize consumed in the USA in 2006 was used domestically for animal feed, 31% was processed for ethanol, food or industrial use, and 19% was exported (USDA 2007). With the recent growth in use of maize for ethanol production, interest in the recovery of oil from the grain has increased (Hojilla-Evangelista and Johnson 2003).

While the composition of maize grain is suitable for feeding a variety of livestock, increasing the oil content of the grain improves its nutritional value further, due in large part to the increase in metabolizable energy (Han et al. 1987; Song et al. 2003). In addition, high oil maize typically has more protein, lysine and carotenoids than conventional maize (Han et al. 1987). Lambert (2001) reviewed a number of studies with poultry, swine, sheep and dairy cattle that demonstrated improved growth, feed efficiency and/or product quality from animals fed rations that included high oil maize.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alrefai R, Berke TG, Rocheford TR (1995) Quantitative trait locus analysis of fat acid concentrations in maize. Genome 38:894–901

    Article  PubMed  CAS  Google Scholar 

  • Anonymous (2006) Corn oil, 5th edn. Corn Refiners Association, Washington, DC Ash M, Dohlman E (2006) USDA oil crops situation and outlook yearbook. Market and Trade Economics Division, Economic Research Service, US Department of Agriculture, Washington,DC

    Google Scholar 

  • Ashton AR, Jenkins CLD, Whitfeld PR (1994) Molecular cloning of two different cDNAs for maize acetyl CoA carboxylase. Plant Mol Biol 24:35–49

    Article  PubMed  CAS  Google Scholar 

  • Bao XM, Focke M, Pollard M, Ohlrogge J (2000) Understanding in vivo carbon precursor supply for fatty acid synthesis in leaf tissue. Plant J 22:39–50

    Article  PubMed  CAS  Google Scholar 

  • Bate NJ, Niu XP, Wang YW, Reimann KS, Helentjaris TG (2004) An invertase inhibitor from maize localizes to the embryo surrounding region during early kernel development. Plant Phys-iol 134:246–254

    Article  CAS  Google Scholar 

  • Baud S, Mendoza MS, To A, Harschet E, Lepiniec L, Dubreucq B (2007) WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J 50:825–838

    Article  PubMed  CAS  Google Scholar 

  • Benning C, Xu C, Awai K (2006) Non-vesicular and vesicular lipid trafficking involving plastids. Curr Opin Plant Biol 9:241–247

    Article  PubMed  CAS  Google Scholar 

  • Berke TG, Rocheford TR (1995) Quantitative trait loci for flowering, plant and ear height, and kernel traits in maize. Crop Sci 35:1542–1549

    Google Scholar 

  • Berquist RR, Nubel DS, Thompson DL (1998) Production method for corn with enhanced quality grain traits. Patent 5706603

    Google Scholar 

  • Brown AP, Affleck V, Fawcett T, Slabas AR (2006) Tandem affinity purification tagging of fatty acid biosynthetic enzymes in Synechocystis sp PCC6803 and Arabidopsis thaliana. J Exp Bot 57:1563–1571

    Article  PubMed  CAS  Google Scholar 

  • Burell MM, Mooney PJ, Blundy M, Carter D, Wilson F, Green J, Blundy KS, Rees TA (1994) Genetic manipulation of 6-phosphofructokinase in potato tubers. Planta 194:95–101

    Article  Google Scholar 

  • Cao YZ, Huang AHC (1987) Acyl coenzyme A preference of diacylglycerol acyltransferase from the maturing seeds of Cuphea, maize,rapeseed, and canola. Plant Physiol 84:762–765

    PubMed  CAS  Google Scholar 

  • Cernac A, Benning C (2004) WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40:575–585

    Article  PubMed  CAS  Google Scholar 

  • Clark D, Dudley JW, Rocheford TR, LeDeaux JR (2006) Genetic analysis of corn kernel chemical composition in the random mated 10 generation of the cross of generations 70 of IHO × ILO. Crop Sci 46:807–819

    Article  Google Scholar 

  • Curtis J, Brunson A, Hubbard J, Earle F (1956) Effect of the pollen parent on oil content of the corn kernel. Agron J 48:551–555

    CAS  Google Scholar 

  • Curtis PE, Leng ER, Hageman RH (1968) Developmental changes in oil and fatty acid content of maize strains varying in oil content. Crop Sci 8:689–693

    CAS  Google Scholar 

  • Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phos-pholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA 97:6487–6492

    Article  PubMed  CAS  Google Scholar 

  • Doehlert D (1990) Distribution of enzyme activities within the developing maize (Zea mays) kernel in relation to starch, oil and protein accumulation. Physiol Plant 78:560–567

    Article  CAS  Google Scholar 

  • Duarte AP, Mason SC, Jackson DS, Kiehl J de C (2005) Grain quality of Brazilian maize genotypes as influenced by nitrogen level. Crop Sci 45:1958–1964

    Article  Google Scholar 

  • Dudley JW (1977) Seventy-six generations of selection for oil and protein percentage in maize. In: Pollak E, et al. (eds) Proc Int Conf on Quantitative Genetics, Ames, 16—21 August 1976, pp. 459–473. Iowa State University Press, Ames

    Google Scholar 

  • Dudley JW, Lambert RJ (2004) 100 generations of selection for oil and protein in corn. Plant Breed Rev 24:79–110

    Google Scholar 

  • Dudley JW, Lambert RJ, de la Roche IA (1977) Genetic analysis of crosses among corn strains divergently selected for percent oil and protein. Crop Sci 17:111–117

    Google Scholar 

  • Dudley JW, Dijkhuizen A, Paul C, Coates ST, Rocheford TR (2004) Effects of random-mating on marker-QTL associations in the cross of the Illinois High Protein × Illinois Low Protein maize strains. Crop Sci 44:1419–1428

    CAS  Google Scholar 

  • Dudley JW, Clark D, Rocheford TR, LeDeaux JR (2007) Genetic analysis of corn kernel chemical composition in the random mated 7 generation of the cross of generations 70 of IHP × ILP. Crop Sci 47:45–57

    Article  CAS  Google Scholar 

  • Eastmond PJ, Rawsthorne S (2000) Coordinate changes in carbon partitioning and plastidial metabolism during the development of oilseed rape embryos. Plant Physiol 122:767–774

    Article  PubMed  CAS  Google Scholar 

  • Eastmond PJ, Dennis DT, Rawsthorne S (1997) Evidence that a malate/inorganic phosphate exchange translocator imports carbon across the leucoplast envelope for fatty acid synthesis in developing castor seed endosperm. Plant Physiol 114:851–856

    PubMed  CAS  Google Scholar 

  • Egli MA, Gengenbach BG, Gronwald JW, Somers DA, Wyse DL (1993) Characterization of maize acetyl-coenzyme A carboxylase. Plant Physiol 101:499–506

    PubMed  CAS  Google Scholar 

  • Fell DA (1997) Understanding the control of metabolism. Plenum Press, London

    Google Scholar 

  • Fischer K, Kammerer B, Gutensohn M, Arbinger B, Weber A, Hausler RE, Flugge UI (1997) A new class of plastidic phosphate translocators: a putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter. Plant Cell 9:453–462

    Article  PubMed  CAS  Google Scholar 

  • Flugge UI (1998) Metabolite transporters in plastids. Curr Opin Plant Biol 1:201–206

    Article  PubMed  CAS  Google Scholar 

  • Focks N, Benning C (1998) wrinkled1: A novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol 118:91–101

    Article  PubMed  CAS  Google Scholar 

  • Genter C, Eheart J, Linkous W (1956) Effects of location, hybrid, fertilizer, and rate of planting on the oil and protein contents of corn grain. Agron J 48:63–67

    CAS  Google Scholar 

  • Gibon Y, Blaesing OE, Hannemann J, Carillo P, Hohne M, Hendriks JHM, Palacios N, Cross J, Selbig J, Stitt M (2004) A robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell 16:3304–3325

    Article  PubMed  CAS  Google Scholar 

  • Goldman IL, Rocheford TR, Dudley JW (1994) Molecular markers associated with maize kernel oil concentration in an Illinois high protein × Illinois low protein cross. Crop Sci 34:908–915

    Google Scholar 

  • Griffith SM, Jones RJ, Brenner ML (1987) In vitro sugar transport in Zea mays L. Kernels: II. Characteristics of sugar absorption and metabolism by isolated developing embryos. Plant Physiol 84:472–475

    PubMed  CAS  Google Scholar 

  • Han Y, Parsons CM, Alexander DE (1987) Nutritive value of high oil corn for poultry. Poultry Sci 66:103–111

    CAS  Google Scholar 

  • Harwood JL (1996) Recent advances in the biosynthesis of plant fatty acids. Biochim Biophys Acta Lipids Lipid Metab 1301:7–56

    Article  Google Scholar 

  • Herbert D, Price LJ, Alban C, Dehaye L, Job D, Cole DJ, Pallett KE, Harwood JL (1996) Kinetic studies on two isoforms of acetyl-CoA carboxylase from maize leaves. Biochem J 318: 997–1006

    PubMed  CAS  Google Scholar 

  • Hobbs DH, Lu CF, Hills MJ (1999) Cloning of a cDNA encoding diacylglycerol acyltransferase from Arabidopsis thaliana and its functional expression. FEBS Lett 452:145–149

    Article  PubMed  CAS  Google Scholar 

  • HojillaQQQEvangelista MP, Johnson LA (2003) Sequential extraction processing of high-oil corn. Cereal Chem 80:679–683

    Article  CAS  Google Scholar 

  • Hong SK, Kitano H, Satoh H, Nagato Y (1996) How is embryo size genetically regulated in rice? Development 122:2051–2058

    PubMed  CAS  Google Scholar 

  • Hsieh K, Huang AHC (2004) Endoplasmic reticulum, oleosins, and oils in seeds and tapetum cells. Plant Physiol 136:3427–3434

    Article  PubMed  CAS  Google Scholar 

  • Jako C, Kumar A, Wei YD, Zou JT, Barton DL, Giblin EM, Covello PS, Taylor DC (2001) Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol 126:861–874

    Article  PubMed  CAS  Google Scholar 

  • Jellum MD, Marion JE (1966) Factors affecting oil content and oil composition of corn (Zea mays L.) grain. Crop Sci 6:41–42

    Google Scholar 

  • Jellum MD, Boswell FC, Young CT (1973) Nitrogen and boron effects on protein and oil of corn grain. Agron J 65:330–331

    Google Scholar 

  • Jenni S, Leibundgut M, Maier T, Ban N (2006) Architecture of a fungal fatty acid synthase at 5 Ã… resolution. Science 311:1263–1267

    Article  PubMed  CAS  Google Scholar 

  • Jouhet J, Marechal E, Block MA (2007) Glycerolipid transfer for the building of membranes in plant cells. Progr Lipid Res 46:37–55

    Article  CAS  Google Scholar 

  • Jurgens SK, Johnson RR, Boyer JS (1978) Dry matter production and translocation in maize subjected to drought during grain fill. Agron J 70:678–682

    CAS  Google Scholar 

  • Ke J, Behal RH, Back SL, Nikolau BJ, Wurtele ES, Oliver DJ (2000) The role of pyruvate dehy-drogenase and acetyl-coenzyme A synthetase in fatty acid synthesis in developing Arabidopsis seeds. Plant Physiol 123:497–508

    Article  PubMed  CAS  Google Scholar 

  • Kermode AR (2005) Role of abscisic acid in seed dormancy. J Plant Growth Regul 24:319–344

    Article  CAS  Google Scholar 

  • Kinney AJ (2006) Metabolic engineering in plants for human health and nutrition. Curr Opin Biotechnol 17:130–138

    PubMed  CAS  Google Scholar 

  • Kinney AJ, Cahoon EB, Hitz WD (2002) Manipulating desaturase activities in transgenic crop plants. Biochem Soc Trans 30:1099–1103

    Article  PubMed  CAS  Google Scholar 

  • Klaus D, Ohlrogge JB, Neuhaus HE, Doermann P (2004) Increased fatty acid production in potato by engineering of acetyl-CoA carboxylase. Planta 219:389–396

    Article  PubMed  CAS  Google Scholar 

  • Kroon JTM, Wei WX, Simon WJ, Slabas AR (2006) Identification and functional expression of a type 2 acyl-CoA: diacylglycerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals. Phytochemistry 67:2541–2549

    Article  PubMed  CAS  Google Scholar 

  • Lalonde S, Wipf D, Frommer WB (2004) Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu Rev Plant Biol 55:341–372

    Article  PubMed  CAS  Google Scholar 

  • Lambert RJ (2001) High-oil corn hybrids. In: Hallauer AR (ed) Specialty corns, 2nd edn. CRC Press, Boca Raton, pp 131–154

    Google Scholar 

  • Lambert RJ, Alexander DE, Mollring EL, Wiggens B (1997) Selection for increased oil concentration in maize kernels and associated changes in several kernel traits. Maydica 42: 39–43

    Google Scholar 

  • Lambert RJ, Alexander DE, Han ZJ (1998) A high oil pollinator enhancement of kernel oil and effects on grain yields of maize hybrids. Agron J 90:211–215

    Google Scholar 

  • Lambert RJ, Alexander DE, Mejaya IJ (2004) Single kernel selection for increased grain oil in maize synthetics and high-oil hybrid development. Plant Breed Rev 24:153–175

    CAS  Google Scholar 

  • Lara-Nunez A, Rodriguez-Sotres R (2004) Characterization of a dicarboxylate exchange system able to exchange pyrophosphate for L-malate in non-photo synthetic plastids from developing maize embryos. Plant Sci 166:1335–1343

    Article  CAS  Google Scholar 

  • Lardizabal KD, Mai JT, Wagner NW, Wyrick A, Voelker T, Hawkins DJ (2001) DGAT2 is a new diacylglycerol acyltransferase gene family — purification, cloning, and expression in insect cells of two polypeptides from Mortierella ramanniana with diacylglycerol acyltransferase activity. J Biol Chem 276:38862–38869

    Article  PubMed  CAS  Google Scholar 

  • Lardizabal KD, Thompson GA, Hawkins D (2003) Diacylglyerol transferase proteins. Patent US23115632A1

    Google Scholar 

  • Lazic-Jancic V, Ignajatovic-Micic D, Markovic K, Coric T, Kovacevic D, Saratlic G, Quarrie S (2003) Changes in RFLP allele frequencies during recurrent selection for high oil content in maize. Maize Genetics Coop Newsl 77:4–5

    Google Scholar 

  • Laurie CC, Chasalow SD, LeDeaux JR, McCarroll R, Bush D, Hauge B, Lai CQ, Clark D, Rocheford TR, Dudley JW (2004) The genetic architecture of response to long-term artificial selection for oil concentration in the maize kernel. Genetics 168:2141–2155

    Article  PubMed  Google Scholar 

  • Lee JM, Williams ME, Tingey SV, Rafalski JA (2002) DNA array profiling of gene expression changes during maize embryo development. Funct Integr Genomics 2:13–27

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Ratnayake C, Huang AHC (1995) Genetic dissection of the coexpression of genes encoding the 2 isoforms of oleosins in the oil bodies of maize kernel. Plant J 7:603–611

    Article  PubMed  CAS  Google Scholar 

  • Letchworth MB, Lambert RJ (1998) Pollen parent effects on oil, protein, and starch concentration in maize kernels. Crop Sci 38:363–367

    CAS  Google Scholar 

  • Lung SC, Weselake RJ (2006) Diacylglycerol acyltransferase: a key mediator of plant triacylglyc-erol synthesis. Lipids 41:1073–1088

    Article  PubMed  CAS  Google Scholar 

  • Maddonni GA, Otegui ME (2006) Intra-specific competition in maize: contribution of extreme plant hierarchies to grain yield, grain yield components and kernel composition. Field Crops Res 97:155–166

    Article  Google Scholar 

  • Maier T, Jenni S, Ban N (2006) Architecture of mammalian fatty acid synthase at 4.5 Ã… resolution. Science 311:1258–1262

    Article  PubMed  CAS  Google Scholar 

  • Mangen TF, Thomison PR, Strachan SD (2005) Early-season defoliation effects on TopCross high-oil corn production. Agron J 97:823–831

    Article  Google Scholar 

  • Mangolin CA, de Souza CL Jr, Garcia AAF, Garcia AF, Sibov ST, de Souza AP (2004) Mapping QTLs for kernel oil content in a tropical maize population. Euphytica 137:251–259

    Article  CAS  Google Scholar 

  • Mendoza MS, Dubreucq B, Miguel M, Caboche M, Lepiniec L (2005) LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed specific mRNAs in Arabidopsis leaves. FEBS Lett 579:4666–4670

    Google Scholar 

  • Mhaske V, Beldjilali K, Ohlrogge J, Pollard M (2005) Isolation and characterization of an Arabidopsis thaliana knockout line for phospholipid: diacylglycerol transacylase gene (At5g13640). Plant Physiol Biochem 43:413–417

    PubMed  CAS  Google Scholar 

  • Miao Y, Mulla DJ, Robert PC, Hernandez JA (2006) Within-field variation in corn yield and grain quality reponses to nitrogen fertilization and hybrid selection. Agron J 98:129–140

    Article  CAS  Google Scholar 

  • Misevic D, Alexander DE (1989) Twenty-four cycles of phenotypic recurrent selection for percent oil in maize. I. Per se and test-cross performance. Crop Sci 29:320–324

    CAS  Google Scholar 

  • Moche M, Schneider G, Edwards P, Dehesh K, Lindqvist Y (1999) Structure of the complex between the antibiotic cerulenin and its target, beta-ketoacyl-acyl carrier protein synthase. J Biol Chem 274:6031–6034

    Article  PubMed  CAS  Google Scholar 

  • Mohlmann T, Tjaden J, Schwoppe C, Winkler HH, Kampfenkel K, Neuhaus HE (1998) Occurrence of two plastidic ATP/ADP transporters in Arabidopsis thaliana L. — molecular characterisation and comparative structural analysis of similar ATP/ADP translocators from plastids and Rick-ettsia prowazekii. Eur J Biochem 252:353–359

    Article  PubMed  CAS  Google Scholar 

  • Moose SP, Dudley JW, Rocheford TR (2004) Maize selection passes the century mark: a unique resource for 21st century genomics. Trends Plant Sci 9:358–364

    Article  PubMed  CAS  Google Scholar 

  • Oo KC, Huang AHC (1989) Lysophosphatidate acyl transferase activities in the microsomes from palm endosperm, maize scutellum, and rapeseed cotyledon of maturing seeds. Plant Physiol 91:1288–1295

    PubMed  CAS  Google Scholar 

  • Opsahl-Ferstad HG, LeDeunff E, Dumas C, Rogowsky PM (1997) ZmEsr, a novel endosperm-specific gene expressed in a restricted region around the maize embryo. Plant J 12: 235–246

    Article  PubMed  CAS  Google Scholar 

  • Orthoefer FT, Sinram RD (1987) Corn oil: composition, processing, and utilization. In: Watson SA, Ramstad PE (eds) Corn chemistry and technology. American Association of Cereal Chemists, St. Paul, pp 535–551

    Google Scholar 

  • Page RA, Okada S, Harwood JL (1994) Acetyl-CoA carboxylase exerts strong flux control over lipid synthesis in plants. Biochim Biophys Acta 1210:369–372

    PubMed  CAS  Google Scholar 

  • Paiva R, Kriz AL (1994) Effect of abscisic acid on embryo-specific gene exprsession during normal and precocious germination in normal and viviparous maize (Zea mays) embryos. Planta 192:332–339

    Article  CAS  Google Scholar 

  • Patel MS, Korotchkina LG (2006) Regulation of the pyruvate dehydrogenase complex. Biochem Soc Trans 34:217–222

    Article  PubMed  CAS  Google Scholar 

  • Paul M, Foyer C (2001) Sink regulation of photosynthesis. J Exp Bot 52:1383–1400

    Article  PubMed  CAS  Google Scholar 

  • Paul M, Sonnewald U, Hajirezaei M, Dennis D, Stitt M (1995) Transgenic tobacco plants with strongly decreased expression of pyrophosphate-fructose-6-phosphate 1-phosphotransferase do not differ significantly from wild-type in photosynthate partitioning, plant-growth or their ability to cope with limiting phosphate, limiting nitrogen and suboptimal temperatures. Planta 196:277–283

    CAS  Google Scholar 

  • Plaxton WC, Podesta FE (2006) The functional organization and control of plant respiration. Crit Rev Plant Sci 25:159–198

    Article  CAS  Google Scholar 

  • Reynolds TL, Nemeth MA, Glenn KC, Ridley WP, Astwood TD (2005) Natural variability of metabolites in maize grain: differences due to genetic background. J Agric Food Chem 53:10061–10067

    Article  PubMed  CAS  Google Scholar 

  • Rider SD, Henderson JT, Jerome RE, Edenberg HJ, Romero-Severson J, Ogas J (2003) Coordinate repression of regulators of embryonic identity by PICKLE during germination in Arabidopsis. Plant J 35:33–43

    Article  CAS  Google Scholar 

  • Rocheford T, Dudley JW, Lambert R, Widholm J, Endgeseth N (2003) Development of high oil, high oleic value-added maize hybrids. Final Report for Illinois Missouri Biotechnology Alliance Project 98-4, http://www.imba.missouri.edu/report/1998 4.php

  • Roesler K, Shintani D, Savage L, Boddupalli S, Ohlrogge J (1997) Targeting of the Arabidop-sis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. Plant Physiol 113: 75–81

    Article  PubMed  CAS  Google Scholar 

  • Roughan, PG (1997) Stromal concentrations of coenzyme A and its esters are insufficient to account for rates of chloroplast fatty acid synthesis: evidence for substrate channelling within the chloroplast fatty acid synthase. Biochem J 327:267–273

    PubMed  CAS  Google Scholar 

  • Roughan PG, Ohlrogge JB (1996) Evidence that isolated chloroplasts contain an integrated lipid-synthesizing assembly that channels acetate into long-chain fatty acids. Plant Physiol 110:1239– 1247

    PubMed  CAS  Google Scholar 

  • Routaboul JM, Benning C, Bechtold N, Caboche M, Lepiniec L (1999) The TAG1 locus of Ara-bidopsis encodes for a diacylglycerol acyltransferase. Plant Physiol Biochem 37:831–840

    Article  PubMed  CAS  Google Scholar 

  • Ruuska SA, Girke T, Benning C, Ohlrogge JB (2002) Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell 14:1191–1206

    Article  PubMed  CAS  Google Scholar 

  • Sasaki Y, Nagano Y (2004) Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. BioSci Biotechnol Biochem 68:1175–1184

    Article  PubMed  CAS  Google Scholar 

  • Schwender J, Ohlrogge J, Shachar-Hill Y (2004) Understanding flux in plant metabolic networks. Curr Opin Plant Biol 7:309–317

    Article  PubMed  CAS  Google Scholar 

  • Séne M, Thévenot C, Hoffmann D, Bénétrix F, Causse M, Prioul J-L (2001) QTLs for grain dry milling properties, composition and vitreousness in maize recombinant inbred lines. Theor Appl Genet 102:591–599

    Article  Google Scholar 

  • Shen B, Sinkevicius KW, Selinger DA, Tarczynski MC (2006) The homeobox gene GLABRA2 affects seed oil content in Arabidopsis. Plant Mol Biol 60:377–387

    Article  PubMed  CAS  Google Scholar 

  • Somers DA, Keith RA, Egli MA, Marshall LC, Gengenbach BG, Gronwald JW, Wyse DL (1993) Expression of the Acc1 gene-encoded acetyl-coenzyme A carboxylase in developing maize (Zea mays L.) kernels. Plant Physiol 101:1097–1101

    PubMed  CAS  Google Scholar 

  • Song GL, Li DF, Piao XS, Chi F, Wang JT (2003) Comparisons of amino acid availability by different methods and metabolizable energy determination of a Chinese variety of high oil corn. Poultry Sci 82:1017–1023

    CAS  Google Scholar 

  • Song TM, Chen SJ (2004) Long term selection for oil concentration in five maize populations. Maydica 49:9–14

    Google Scholar 

  • Song TM, Kong F, Li C, Song G (1999) Eleven cycles of single kernel phenotypic recurrent selection for percent oil in Zhongzong no. 2 maize synthetic. J Genet Breed 53:31–35

    Google Scholar 

  • Song XF, Song TM, Dai JR, Rocheford TR, Li JS (2004) QTL mapping of kernel oil concentration with high-oil maize by SSR markers. Maydica 49:41–48

    Google Scholar 

  • Stahl U, Carlsson AS, Lenman M, Dahlqvist A, Huang BQ, Banas W, Banas A, Stymne S (2004) Cloning and functional characterization of a phospholipid: diacylglycerol acyltransferase from Arabidopsis. Plant Physiol 135:1324–1335

    Article  PubMed  CAS  Google Scholar 

  • Sun C, Cao YZ, Huang AHC (1988) Acyl coenzyme A preference of the glycerol phosphate pathway in the microsomes from the maturing seeds of palm, maize and rapeseed. Plant Physiol 88:56–60

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Kao CY, Cocciolone S, McCarty DR (2001) Maize VP1 complements Arabidopsis abi3 and confers a novel ABA/auxin interaction in roots. Plant J 28:409–418

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Ketterling MG, Li Q-B, McCarty DR (2003) Viviparous1 alters global gene expression patterns through regulation of abscisic acid signaling. Plant Physiol 132:1664–1677

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Wang HHY, McCarty DR (2007) Repression of the LEAFY COTYLEDON 1/B3 regulatory network in plant embryo development by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 genes. Plant Physiol 143:902–911

    Article  PubMed  CAS  Google Scholar 

  • Taliercio EW, Kim JY, Mahe A, Shanker S, Choi J, Cheng WH, Prioul JL, Chourey PS (1999) Isolation, characterization and expression analyses of two cell wall invertase genes in maize. J Plant Physiol 155:197–204

    CAS  Google Scholar 

  • Tan SL, Morrison WR (1979) The distribution of lipids in the germ endosperm pericarp and tip cap of amylomaize Lg-11 hybrid maize and waxy maize. J Am Oil Chem Soc 56:531–535

    Article  CAS  Google Scholar 

  • Thelen JJ, Ohlrogge JB (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng 4:12–21

    Article  PubMed  CAS  Google Scholar 

  • Thomison PR, Geyer AB, Lotz LD, Siegrist HJ, Dobbels TL (2002) TopCross high-oil corn production: agronomic performance. Agron J 94:290–299

    Google Scholar 

  • Thomison PR, Geyer AB, Lotz LD, Siegrist HJ, Dobbels TL (2003) TopCross high oil corn production: select grain quality attributes. Agron J 95:147–154

    Google Scholar 

  • Thompson DL, Jellum M, Young C (1973) Effect of controlled temperature environments on oil content and on fatty acid composition of corn oil. J Am Chem Soc 50:540–542

    Article  CAS  Google Scholar 

  • Ting JT, Lee K, Ratnayake C, Platt KA, Balsamo RA, Huang AH (1996) Oleosin genes in maize kernels having diverse oil contents are constitutively expressed independent of oil contents. Size and shape of intracellular oil bodies are determined by the oleosins/oils ratio. Planta 199:158– 165

    Article  PubMed  CAS  Google Scholar 

  • To A, Valon C, Savino G, Guilleminot J, Devic M, Giraudat J, Parcy F (2006) A network of local and redundant gene regulation governs Arabidopsis seed maturation. Plant Cell 18:1642–1651

    Article  PubMed  CAS  Google Scholar 

  • Tovar-Mendez A, Miernyk JA, Randall DD (2003) Regulation of pyruvate dehydrogenase complex activity in plant cells. European J of Biochemistry 270:1043–1049

    Article  CAS  Google Scholar 

  • Tsukagoshi H, Morikami A, Nakamura K (2007) Two B3 domain transcriptional repressors prevent sugar-inducible expression of seed maturation genes in Arabidopsis seedlings. Proc Natl Acad Sci USA 104:2543–2547

    Article  PubMed  CAS  Google Scholar 

  • USDA (2007) Feed Grains Database: Yearbook Tables. In. United States Department of Agriculture, Economic Research Service

    Google Scholar 

  • Val D, Banu G, Seshadri K, Lindqvist V, Dehesh K (2000) Re-engineering ketoacyl synthase specificity. Structure 8:565–566

    Article  PubMed  CAS  Google Scholar 

  • Vigeolas H, Waldeck P, Zank T, Geigenberger P (2007) Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehyrogenase under the control of a seed-specific promoter. Plant Biotechnology J 5:431–441

    Article  CAS  Google Scholar 

  • Voelker T, Kinney AJ (2001) Variations in the biosynthesis of seed-storage lipids. In Annual Review of Plant Physiology and Plant Molecular Biology, pp 335–361

    Google Scholar 

  • Wang H, Gui J, Lambert KN, Lin Y (2007) Developmental control of Arabidopsis seed oil biosynthesis. Planta 226:773–783

    Article  PubMed  CAS  Google Scholar 

  • Watson SA (1987) Structure and Composition. In SA Watson, PE Ramstad, eds, Corn Chemistry and Technology. American Association of Cereal Chemists, Inc., St. Paul, MN, pp 53–82

    Google Scholar 

  • Weber EJ (1987) Lipids of the kernel. In SA Watson, PE Ramstad, eds, Corn Chemistry and Technology. American Association of Cereal Chemists, Inc., St. Paul, MN, pp 311–349

    Google Scholar 

  • Welch L (1969) Effect of N, P, and K on the percent and yield of oil in corn. Agron J 61:890–891

    Article  CAS  Google Scholar 

  • Wilhelm EP, Mullen R, Keeling PL, Singletary G (1999) Heat stress during grain filling in maize: effects on kernel growth and metabolism. Crop Sci 39:1733–1741

    CAS  Google Scholar 

  • Zhang F-Y, Yang M-F, Xu Y-N (2005) Silencing of DGAT1 in tobacco causes a reduction in seed oil content. Plant Sci 169:689–694

    Article  CAS  Google Scholar 

  • Zheng P, Allen WB, Roesler K, Williams ME, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawtz W, Bhattramakki D, Llaca V, Deschamps S, Zhong G-Y, Tarczynski MC, Shen B (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nature Genetics 40: 367–372

    Article  PubMed  CAS  Google Scholar 

  • Zou JT, Wei YD, Jako C, Kumar A, Selvaraj G, Taylor DC (1999) The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J 19:645–653

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jill Deikman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, B.V

About this chapter

Cite this chapter

Val, L.D., Schwartz, S.H., Kerns, M.R., Deikman, J. (2009). Development of a High Oil Trait for Maize. In: Kriz, A.L., Larkins, B.A. (eds) Molecular Genetic Approaches to Maize Improvement. Biotechnology in Agriculture and Forestry, vol 63. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68922-5_21

Download citation

Publish with us

Policies and ethics