Advertisement

Zein Storage Proteins

  • David R. Holding
  • Brian A. LarkinsEmail author
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 63)

The seeds of angiosperms accumulate large amounts of nitrogen in the form of storage proteins that are hydrolyzed and utilized by the embryo during germination. Besides their importance for establishing the seedling, storage proteins are also a valuable source of amino acids for the animals that consume them. Storage proteins are the most abundant proteins in the seed, accounting for 50–70% of the total protein. As a result, their amino acid composition has important nutritional consequences, especially for monogastric animals such as humans and certain livestock. Usually one or more of the essential amino acids is deficient in seeds. As a result of this, a great deal of research has been devoted to finding ways of increasing the level of these amino acids. Aside from their nutritional value, the structure and solubility properties of storage proteins are also important, because they confer important functional characteristics to flours made from seeds. These properties affect food processing and manufacturing, and they also make these proteins useful for manufacturing a variety of industrial products. Therefore, it is not surprising that the structure and synthesis of seed storage proteins has been of interest for many years.

In angiosperms, seed storage proteins are found in the cotyledons of the embryo, where they form accretions, or protein bodies, within specialized protein storage vacuoles (Hermann and Larkins 1999). The most common forms of embryo storage proteins are saline-soluble globulins of three (7S or vicillin-type) or six (11S or legumin-type) subunits (Casey 1999). These proteins have been crystallized and the molecular details of their structure are being increasingly understood (Adachi et al. 2003). Embryos also contain significant amounts of other proteins, including protease inhibitors (Domoney 1999; Shewry 1999), α-amylase inhibitors (Carbonero and García-Olmedo 1999), lectins (Peumans and Van Damme 1999) and ribosome inactivating proteins (RIPs) (Nielsen and Boston 2001), which presumably are synthesized as anti-nutritional factors that protect the seed from pathogens, insects and bird predators. However, these proteins also affect the food and feed value of certain types of seeds.

Keywords

Starch Granule Protein Body Seed Storage Protein Quality Protein Maize Maize Endosperm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn S, Tanksley SD (1993) Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci USA 90:7980–7984PubMedCrossRefGoogle Scholar
  2. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plantArabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  3. Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Bot (Lond) 95:45–90CrossRefGoogle Scholar
  4. Bennetzen JL, SanMiguel P, Chen M, Tikhonov A, Francki M, Avramova Z (1998) Grass genomes. Proc Natl Acad Sci USA 95:1975–1978PubMedCrossRefGoogle Scholar
  5. Bruggmann R, Bharti AK, Gundlach H, Lai J, Young S, Pontaroli AC, Wei F, Haberer G, Fuks G, Du C, Raymond C, Estep MC, Liu R, Bennetzen JL, Chan AP, Rabinowicz PD, Quackenbush J, Barbazuk WB, Wing RA, Birren B, Nusbaum C, Rounsley S, Mayer KF, Messing J (2006) Uneven chromosome contraction and expansion in the maize genome. Genome Res 16:1241–1251PubMedCrossRefGoogle Scholar
  6. Clark RM, Linton E, Messing J, Doebley JF (2004) Pattern of diversity in the genomic region near the maize domestication gene tb1. Proc Natl Acad Sci USA 101:700–707PubMedCrossRefGoogle Scholar
  7. Clausius R (1868) On the mechanical theory of heat. Philos Mag 40:122Google Scholar
  8. Du C, Swigonova Z, Messing J (2006) Retrotranspositions in orthologous regions of closely related grass species. BMC Evol Biol 6:62PubMedCrossRefGoogle Scholar
  9. Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974PubMedCrossRefGoogle Scholar
  10. Gaut BS, Doebley JF (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA 94:6809–6814PubMedCrossRefGoogle Scholar
  11. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativaL. ssp.japonica). Science 296:92–100PubMedCrossRefGoogle Scholar
  12. Haberer G, Young S, Bharti AK, Gundlach H, Raymond C, Fuks G, Butler E, Wing RA, Rounsley S, Birren B, Nusbaum C, Mayer KF, Messing J (2005) Structure and architecture of the maize genome. Plant Physiol 139:1612–1624PubMedCrossRefGoogle Scholar
  13. Hulbert SH, Richter TE, Axtell JD, Bennetzen JL (1990) Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci USA 87:4251–4255PubMedCrossRefGoogle Scholar
  14. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  15. Itoh T, Tanaka T, Barrero RA, Yamasaki C, Fujii Y, Hilton PB, Antonio BA, Aono H, Apweiler R, Bruskiewich R, Bureau T, Burr F, Costa de Oliveira A, Fuks G, Habara T, Haberer G, Han B, Harada E, Hiraki AT, Hirochika H, Hoen D, Hokari H, Hosokawa S, Hsing Y, Ikawa H, Ikeo K, Imanishi T, Ito Y, Jaiswal P, Kanno M, Kawahara Y, Kawamura T, Kawashima H, Khurana JP, Kikuchi S, Komatsu S, Koyanagi KO, Kubooka H, Lieberherr D, Lin YC, Lonsdale D, Matsumoto T, Matsuya A, McCombie WR, Messing J, Miyao A, Mulder N, Nagamura Y, Nam J, Namiki N, Numa H, Nurimoto S, O'Donovan C, Ohyanagi H, Okido T, Oota S, Osato N, Palmer LE, Quetier F, Raghuvanshi S, Saichi N, Sakai H, Sakai Y, Sakata K, Sakurai T, Sato F, Sato Y, Schoof H, Seki M, Shibata M, Shimizu Y, Shinozaki K, Shinso Y, Singh NK, Smith-White B, Takeda J, Tanino M, Tatusova T, Thongjuea S, Todokoro F, Tsugane M, Tyagi AK, Vanavichit A, Wang A, Wing RA, Yamaguchi K, Yamamoto M, Yamamoto N, Yu Y, Zhang H, Zhao Q, Higo K, Burr B, Gojobori T, Sasaki T (2007) Curated genome annotation ofOryza sativassp.japonicaand comparative genome analysis withArabidopsis thaliana. Genome Res 17:175–183PubMedCrossRefGoogle Scholar
  16. Jaenicke-Despres V, Buckler ES, Smith BD, Gilbert MT, Cooper A, Doebley J, Paabo S (2003) Early allelic selection in maize as revealed by ancient DNA. Science 302:1206–1208PubMedCrossRefGoogle Scholar
  17. Kapitonov VV, Jurka J (2001) Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci USA 98:8714–8719PubMedCrossRefGoogle Scholar
  18. Lai J, Li Y, Messing J, Dooner HK (2005) Gene movement by helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci USA 102:9068–9073PubMedCrossRefGoogle Scholar
  19. Larson R, Messing J (1982) Apple II software for M13 shotgun DNA sequencing. Nucleic Acids Res 10:39–49PubMedCrossRefGoogle Scholar
  20. Llaca V, Messing J (1998) Amplicons of maize zein genes are conserved within genic but expanded and constricted in intergenic regions. Plant J 15:211–220PubMedCrossRefGoogle Scholar
  21. Lunde CF, Morrow DJ, Roy LM, Walbot V (2003) Progress in maize gene discovery: a project update. Funct Integr Genomics 3:25–32PubMedGoogle Scholar
  22. Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 101:12404–12410PubMedCrossRefGoogle Scholar
  23. May BP, Liu H, Vollbrecht E, Senior L, Rabinowicz PD, Roh D, Pan X, Stein L, Freeling M, Alexander D, Martienssen R (2003) Maize-targeted mutagenesis: a knockout resource for maize. Proc Natl Acad Sci USA 100:11541–11546PubMedCrossRefGoogle Scholar
  24. McCarty DR, Settles AM, Suzuki M, Tan BC, Latshaw S, Porch T, Robin K, Baier J, Avigne W, Lai J, Messing J, Koch KE, Hannah LC (2005) Steady-state transposon mutagenesis in inbred maize. Plant J 44:52–61PubMedCrossRefGoogle Scholar
  25. Messing J, Dooner HK (2006) Organization and variability of the maize genome. Curr Opin Plant Biol 9:157–163PubMedCrossRefGoogle Scholar
  26. Messing J, Crea R, Seeburg PH (1981) A system for shotgun DNA sequencing. Nucleic Acids Res 9:309–321PubMedCrossRefGoogle Scholar
  27. Messing J, Bharti AK, Karlowski WM, Gundlach H, Kim HR, Yu Y, Wei F, Fuks G, Soderlund CA, Mayer KF, Wing RA (2004) Sequence composition and genome organization of maize. Proc Natl Acad Sci USA 101:14349–14354PubMedCrossRefGoogle Scholar
  28. Meyers BC, Tingey SV, Morgante M (2001) Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res 11:1660–1676PubMedCrossRefGoogle Scholar
  29. Moore G, Devos K, Wang Z, Gale MD (1995) Grasses, line up and form a circle. Curr Biol 5:737–739PubMedCrossRefGoogle Scholar
  30. Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997–1002PubMedCrossRefGoogle Scholar
  31. Nelson WM, Bharti AK, Butler E, Wei F, Fuks G, Kim H-R, Wing RA, Messing J, Soderlund C (2005) Whole-genome validation of high-information-content fingerprinting. Plant Physiol 139:27–38PubMedCrossRefGoogle Scholar
  32. Rabinowicz PD, Schutz K, Dedhia N, Yordan C, Parnell LD, Stein L, McCombie WR, Martienssen RA (1999) Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nat Genet 23:305–308PubMedCrossRefGoogle Scholar
  33. Song R, Messing J (2003) Gene expression of a gene family in maize based on noncollinear hap-lotypes.Proc Natl Acad Sci USA 100:9055–9060PubMedCrossRefGoogle Scholar
  34. Song R, Llaca V, Messing J (2002) Mosaic organization of orthologous sequences in grass genomes. Genome Res 12:1549–1555PubMedCrossRefGoogle Scholar
  35. Stam M, Belele C, Ramakrishna W, Dorweiler JE, Bennetzen JL, Chandler VL (2002) The regulatory regions required for B' paramutation and expression are located far upstream of the maize b1 transcribed sequences. Genetics 162:917–930PubMedGoogle Scholar
  36. Swigonova Z, Lai J, Ma J, Ramakrishna W, Llaca V, Bennetzen JL, Messing J (2004) Close split of sorghum and maize genome progenitors. Genome Res 14:1916–1923PubMedCrossRefGoogle Scholar
  37. Swigonova Z, Bennetzen JL, Messing J (2005) Structure and evolution of the r/b chromosomal regions in rice, maize and sorghum. Genetics 169:891–906PubMedCrossRefGoogle Scholar
  38. Thomas CA, Jr (1971) The genetic organization of chromosomes. Annu Rev Genet 5:237–256PubMedCrossRefGoogle Scholar
  39. Thuriaux P (1977) Is recombination confined to structural genes on the eukaryotic genome? Nature 268:460–462PubMedCrossRefGoogle Scholar
  40. Ueda T, Wang Z, Pham N, Messing J (1994) Identification of a transcriptional activator-binding element in the 27-kilodalton zein promoter, the –300 element. Mol Cell Biol 14:4350–4359PubMedGoogle Scholar
  41. Vicente-Carbajosa J, Moose SP, Parsons RL, Schmidt RJ (1997) A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Proc Natl Acad Sci USA 94:7685–7690PubMedCrossRefGoogle Scholar
  42. Vieira J, Messing J (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268PubMedCrossRefGoogle Scholar
  43. Wang Z, Ueda T, Messing J (1998) Characterization of the maize prolamin box-binding factor-1 (PBF-1) and its role in the developmental regulation of the zein multigene family. Gene 223:321–332PubMedCrossRefGoogle Scholar
  44. Wei F, Coe E, Nelson W, Bharti AK, Engler F, Butler E, Kim H, Goicoechea JL, Chen M, Lee S, Fuks G, Sanchez-Villeda H, Schroeder S, Fang Z, McMullen M, Davis G, Bowers JE, Paterson AH, Schaeffer M, Gardiner J, Cone K, Messing J, Soderlund C, Wing RA (2007) Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet 3:e123PubMedCrossRefGoogle Scholar
  45. Whitelaw CA, Barbazuk WB, Pertea G, Chan AP, Cheung F, Lee Y, Zheng L, van Heeringen S, Karamycheva S, Bennetzen JL, SanMiguel P, Lakey N, Bedell J, Yuan Y, Budiman MA, Resnick A, Van Aken S, Utterback T, Riedmuller S, Williams M, Feldblyum T, Schubert K, Beachy R, Fraser CM, Quackenbush J (2003) Enrichment of gene-coding sequences in maize by genome filtration. Science 302:2118–2120PubMedCrossRefGoogle Scholar
  46. Whitkus R, Doebley J, Lee M (1992) Comparative genome mapping of sorghum and maize. Genetics 132:1119–1130PubMedGoogle Scholar
  47. Wilson CM, Spraque GF, Nelsen TC (1989) Linkages among zein genes determined by isoelectric focusing. Theor Appl Genet 77:217–226CrossRefGoogle Scholar
  48. Xu JH, Messing J (2006) Maize haplotype with a helitron-amplified cytidine deaminase gene copy. BMC Genet 7:52PubMedCrossRefGoogle Scholar
  49. Yim YS, Davis GL, Duru NA, Musket TA, Linton EW, Messing JW, McMullen MD, Soderlund CA, Polacco ML, Gardiner JM, Coe EH, Jr (2002) Characterization of three maize bacterial artificial chromosome libraries toward anchoring of the physical map to the genetic map using high-density bacterial artificial chromosome filter hybridization. Plant Physiol 130: 1686–1696PubMedCrossRefGoogle Scholar
  50. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Li J, Liu Z, Qi Q, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Zhao W, Li P, Chen W, Zhang Y, Hu J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Tao M, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativaL. ssp.indica). Science 296:79–92PubMedCrossRefGoogle Scholar
  51. Yuan Y, SanMiguel PJ, Bennetzen JL (2003) High-Cot sequence analysis of the maize genome. Plant J 34:249–255PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V 2009

Authors and Affiliations

  1. 1.Department of Plant SciencesUniversity of Arizona, 303 Forbes BuildingTucsonUSA
  2. 2.Department of Plant SciencesUniversity of Arizona, Marley 822CTucsonUSA

Personalised recommendations